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Abstract 

 

 

Small capitalization stocks are known to have asymmetric risk across bull and bear markets. 

This paper investigates how variance risk affects international equity diversification by 

examining the portfolio choice of a power utility investor confronted with an asset menu that 

includes (but is not limited to) European and North American small equity portfolios. Stock 

returns are generated by a multivariate regime switching process that is able to account for 

both non-normality and predictability of stock returns. Non-normality matters for portfolio 

choice because the investor has a power utility function, implying a preference for positively 

skewed returns and aversion to kurtosis. We find that small cap portfolios command large 

optimal weights only when regime switching (and hence variance risk) is ignored. Otherwise 

a rational investor ought to hold a well-diversified portfolio. However, the availability of 

small caps substantially increases expected utility, in the order of riskless annualized gains of 

3 percent and higher. These findings are robust to a number of modifications concerning the 

coefficient of relative risk aversion, the investment horizon, short-sale possibilities, and the 

exact structure of the asset menu. 
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Effects of Variance Risk 

 
 

Executive Summary 
 

 
E’ noto che le società a bassa capitalizzazione presentano elevati indici di Sharpe, insieme a costi di 
transazione consistenti. Esse potrebbero quindi avere un ruolo importante nelle strategie di 
diversificazione del portafoglio azionario degli investitori istituzionali con orizzonti di investimento più 
lunghi, che godrebbero dei maggiori premi al rischio ammortizzando i costi di transazione su ampi 
periodi di detenzione. Questa congettura si scontra però con i risultati di una ricerca relativa agli USA, 
secondo cui fondi pensione e fondazioni prediligono al contrario le società ad elevata capitalizzazione. 
Questo suggerisce che qualche altra caratteristica delle small cap possa scoraggiarne l’inserimento nei 
portafogli di lungo periodo. 
Il nostro saggio studia il contributo delle small cap alla diversificazione internazionale dei portafogli 
azionari, tenendo conto di loro possibili cambiamenti di volatilità Le small cap sono infatti sensibili alla 
volatilità sistemica: da un lato il loro rendimento è basso quando la volatilità del mercato è elevata, 
dall’altro la loro volatilità è alta quando i rendimenti del mercato sono bassi. 
 
Utilizzando dati settimanali per il periodo 1999-2003 relativi a quattro indici azionari MSCI (Europe 
large e small, North America, e Pacific), troviamo che i mercati attraversano tre fasi - orso, normale e 
toro- con rendimenti medi crescenti. Nella fase normale, che ha anche durata media elevata, le small 
cap europee presentano una varianza molto bassa ed un indice di Sharpe piuttosto elevato. Un 
investitore, con orizzonte fino a due anni, che conoscesse la fase del mercato, investirebbe il 100% del 
portafoglio nelle small cap europee - prima di tenere conto dei costi di transazione. Accade però che la 
volatilità delle small cap europee raddoppia quando il mercato passa ad una fase orso, che è 
caratterizzata non solo da rendimenti bassi ma anche da elevata volatilità del mercato. Questo elevato 
“variance risk” dell small cap europee fa sì che l’ investitore dovrebbe attribuire loro un peso limitato 
(nell’ordine del 10%) se non conoscesse con precisione la fase di mercato.  
Una prima implicazione è che lo scarso interesse per le small cap da parte di investitori con orizzonti 
lunghi, per cui i costi di transazione sono meno importanti, potrebbe in effetti derivare dal loro elevato 
variance risk. Detto questo, troviamo anche che la totale esclusione delle small cap dai portafogli 
azionari presenta costi significativi. Ad esempio, un investitore con un orizzonte di un anno sarebbe 
disposto a pagare costi di transazione pari al 5.9% della sua ricchezza per diversificare con le small cap 
europee. 
Una seconda implicazione è che l’uso del consueto modello media-varianza di Markowitz, che ignora la 
presenza di fasi di mercato, è ampiamente fuorviante. Questo modello suggerisce infatti di investire, 
qualunque sia il suo orizzonte temporale, l’87% del portafoglio nelle small cap europee. 
 
I risultati ottenuti, quando si considerano congiuntamente le small cap europee e nord-americane, sono 
qualtativamente simili. Essi confermano che indici azionari con Sharpe ratio molto elevati possono 
avere una quota di portafoglio molto ridotta – almeno durante alcune fasi di mercato - a causa del 
“variance risk”. In questo caso, però, anche un investitore che non conosca la fase di mercato 
investirebbe il 50% del portafoglio nelle small cap, qualsiasi sia il suo orizzonte. Inoltre, la domanda di 
small caps appare relativamente stabile nelle diverse fasi di mercato, in quanto sia le small cap 
nordamericane che le azioni dell’area Pacifica coprono l’elevato “variance risk” delle europee 
migliorando la performance del portafoglio fuori dalla fase normale. 



1. Introduction

A number of recent papers have focussed on the asset pricing of small capitalization ¯rms. For instance,

Fama and French (1993) report that a portfolio comprising small ¯rms paid a return of 0.74 percent

per annum in excess of the return on a portfolio composed of large ¯rms. 1 Since these patterns in

returns appear to let investors build zero net investment portfolios with positive expected returns, they

are commonly held as being incompatible with asset pricing models such as the CAPM.

At the same time, several papers have focused on international optimal equity portfolio allocation

under a variety of assumptions concerning the width of the asset menu and/or the salient features for the

underlying process generating asset returns, e.g. Ang and Bekaert (2002). To our knowledge, no speci¯c

attention has been given to portfolio choices involving small capitalization ¯rms, despite the ¯nding that

small caps yield a higher risk premium than large stocks both in the US and in Europe. Our paper brings

together these two literatures and studies the contribution of small caps to the international diversi¯cation

of stock portfolios.

Such an e®ort appears to be warranted also in the light of recent developments of the literature struggling

to explain the rational foundations of size e®ects. For instance, the size premium has been interpreted as a

reward for the lower liquidity of small caps. If this is the case, then investors with longer horizons (hence

unlikely to actively trade the stocks) ought to consider small caps as an attractive diversi¯cation vehicle,

since they would earn the small cap premium without incurring into large illiquidity costs (Amihud and

Mendelsohn, 1986; Brennan and Subrahmanyam, 1996; Vayanos, 1998; Lo et al., 2004). However the results

in papers like Gompers and Metrick (2001) imply that in practice it is precisely institutional investors such

as pension funds and university endowments ¡ which often have longer horizons than individuals and

could therefore bene¯t from the illiquidity of small caps ¡ that have low ownership shares in both small

and low turnover companies. So it appears that there must be something else about small caps that

does repel long-horizon investor from buying them, seizing the corresponding premium. In fact, there is

evidence that small caps are highly sensitive to systemic illiquidity and volatility (Amihud, 2002) which are

priced risk factors (Pastor and Stambaugh, 2003; Ang, Hodrick, Xing, and Zhang, 2003). In other words,

investors may discount small caps because their return is low when aggregate volatility is high, and/or

because their volatility is high when aggregate return is low (Acharya and Pedersen, 2004). Our paper is a

quantitative exploration of the e®ects of these properties of US and European small cap stocks for optimal

asset allocation choices under realistic speci¯cations for both investors' preferences and the joint stochastic

process driving asset returns.

Our paper investigates how variance risk ¡ the tendency of small cap returns to be low when aggregate

volatility is high and of small cap volatility to be high when `market' returns are below average ¡ a®ects

investors' portfolio demands by analyzing the composition of international stock portfolios for a constant

relative risk aversion investor with varying investment horizon. We document the importance of small caps

for optimal portfolios and proceed to calculate the welfare costs of restricting the asset menu to large North

American, European and Paci¯c stocks vs. the unrestricted case in which portfolios are also allowed to

include small caps. Both exercises are separately performed with reference to both the case in which the

1The size e®ect in the US markets is studied by Banz (1981), Reinganum (1981), and Keim (1983) among others. More

recently, P¶astor (2000) estimates an average monthly premium of 0.17% per month from 1927 to 1996.There is also international

evidence of size e®ects (Fama and French, 1998).



asset menu is expanded to include US and European small caps, as well a framework in which European

small caps are considered in isolation. The case of European small caps is especially important: First, the

European small size e®ect has been almost neglected by the asset pricing literature (with the exception of

Annaert et al., 2002) that has instead focussed principally on US data.2 Since such a focus poses obvious

data-snooping problems, it is important to prevent our quantitative estimates of the relevance of small caps

for portfolio choice to depend entirely on some well-known but possibly random features of North American

data. Second, as a matter of fact, US small caps experienced an unprecedented performance in the ¯rst

part of our sample period (between January 1999 and June 2001). Since a concern has been expressed

that the size premium may contain long and persistent swings (see e.g. P¶astor, 1999 and Guidolin and

Timmermann, 2004a), it is necessary to obtain broader evidence involving major stock markets, such as

the British, German, and French ones.

Traditionally, portfolio choice problems have been studied assuming joint normality of the distribution

of asset returns (e.g. Elton, Gruber, Brown, and Goetzmann, 2003), often in a mean-variance framework.

However, it is now well known that stock portfolios exhibit non-normal features, such as asymmetric distri-

butions with fat tails and the tendency for returns to be more highly correlated when below the mean (i.e.

in bear markets) than when above the mean (in bull markets), see Longin and Solnik (2001).3 Asymmetries

are especially relevant for small caps which su®er more from credit constraints in cyclical downturns due

to their lower collateral (Perez-Quiros and Timmermann, 2000; Ang and Chen, 2002). Furthermore, there

has long been evidence of predictable returns (Campbell, 1987; Keim and Stambaugh, 1986; Fama and

French, 1998; Pesaran and Timmermann, 1995). This is why we represent stock returns through a Markov

switching process, that is able to account for both non-normality, asymmetric correlations, and predictabil-

ity.4 Di®erently from previous papers, we characterize endogenously the number of regimes, the number of

lags and the distribution of the error terms.5 As recently discussed by Ang and Bekaert (2002), Guidolin

and Timmermann (2005b), and Jondeau and Rockinger (2004), possible departures of excess stock returns

from joint multivariate normality may be of ¯rst-order importance for long-run optimal asset allocation

when investors are characterized by power utility, implying a preference for a positively skewed ¯nal wealth

process (besides for a higher mean) and aversion to the kurtosis (besides the variance) of ¯nal wealth.

Using a 1999-2003 weekly MSCI data set for four major equity portfolios (Europe large and small,

North America, and Paci¯c), we ¯nd that the joint distribution of international excess stock returns is well

captured by a three-state multivariate regime switching model. The three states required to characterize

the data are easy to interpret and can be ordered by increasing risk premia. In the intermediate regime

2Annaert et al. (2002) argue that the premium on European small caps between 1974-2000 is equal to 16.8 per annum

after accounting for transaction costs.
3Butler and Joaquin (2002) characterize the consequence of asymmetric correlations in bear and bull markets in an inter-

national portfolio diversi¯cation framework and show that risk averse investor may want to tilt portfolio weights away from

stock markets characterized by the highest correlations during downturns.
4Ang and Chen (2002) report that regime switching models may replicate the asymmetries in correlations observed in

stock returns data better than GARCH-M and Poisson jump processes. There is now a large body of empirical evidence

suggesting that returns on stocks and other ¯nancial assets can be captured by this class of models. While a single Gaussian

distribution generally does not provide an accurate description of stock returns, the regime switching models that we consider

have far better ability to approximate the return distribution and can capture outliers, fat tails and skew. See Guidolin and

Timmermann (2005), Turner, Startz and Nelson (1989), and Whitelaw (2001).
5Butler and Joaquin (2002) simply de¯ne their three regimes (bear, normal, and bull) according to the level of domestic

returns. Each regime is exogeneously constrained to collect exactly one-third of the sample.
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¡ that we label normal because of its high average duration ¡ European small caps returns exhibit an

extremely low variance which makes their Sharpe ratio relatively high. Thus a risk averse investor, who

is assumed to believe to be in this regime at the time the optimal weights are computed, would invest

100% of her stock portfolio in European small caps for horizons up to two years. On the other hand, the

possible change in regime-speci¯c variance is the highest just for European small caps: in particular, excess

returns variance almost doubles when the regime shifts from normal to bear. The high variance `excursion'

across regimes for European small caps is compounded by the presence of high and negative co-skewness

with other asset returns, which means that the European small variance is high when other excess returns

are negative, and European small returns are small when the `market' is highly volatile. Similarly, the

co-kurtosis of European small excess returns with other excess returns series is high ¡ i.e. the variance of

the European small class tends to correlate with the variance of other assets. Both these features suggest

a tendency of European small caps to display a disproportionate variance risk. The striking implication

is then that a rational investor ought to give European small caps a rather limited weight (as low as 10%

only) when she is ignorant about the nature of the current regime, which is a highly realistic situation. This

shows that higher moments of the return distribution considerably reduce the desirability of small caps

for portfolio diversi¯cation purposes. These results provide the portfolio choice counterparts of the asset

pricing features uncovered in Acharya and Pedersen (2004) and potentially explain the empirical portfolio

choices documented by Gompers and Metrick (2001).

Our results are qualitatively robust when both European and North American small caps are introduced

in the analysis. In this case, even initializing the experiment to a state of ignorance on the regime, we

obtain that small caps ¡ both North American and European ¡ enter optimal long-run portfolios with

a weight exceeding 50% for all investment horizons. Moreover, the demand for small caps appears much

more stable across regimes, which is easily explained by the ¯nding that both North American small caps

and Paci¯c stocks represent good hedges for European small caps that help improve portfolio performance

outside the normal regime. However, the fact remains that equity portfolios with excellent Sharpe ratio

properties may command an optimal a rather modest weight because of their bad variance risk properties.

The implication of our paper is that the scarce interest for small capitalization ¯rms of important classes

of investors ¡ those with long horizons that are unlikely to incur in high transaction costs ¡ may be a

rational response to the statistical properties of the returns on small caps, in particular of high variance

risk (along with illiquidity). Whether and why this represents an equilibrium is beyond the scope of our

paper. The claim that it may be rational to limit one's commitment to small caps does not imply on the

other hand that small caps are irrelevant in international portfolio diversi¯cation terms. Even when their

weight is moderate, we ¯nd that the welfare loss from imposing restrictions on the asset menu that bar the

access to small caps may lead to ¯rst-order magnitude costs (e.g. 3 percent for long horizons).

Our work is closely related to Ang and Bekaert (2002), and Guidolin and Timmermann (2004a,b) who

investigate the e®ects on portfolio diversi¯cation of time-varying correlations across markets when regime

shifts are accounted for. As is customary in this literature and similarly to these papers, we overlook

the analysis of in°ation risk, informational di®erences, and currency hedging costs that ¡ while generally

important ¡ may not radically a®ect rational choices of a large investor who can perfectly hedge currency

risk and fails to have a precise reference basket for consumption purposes. Ang and Bekaert work with

US, German and UK excess stock returns. They fail to reject the hypothesis that correlations are constant
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across regimes, and test whether the US portfolio weight in each regime is di®erent from 100%, conditional

on assuming ¡ as we do ¡ that regimes are perfectly correlated across countries. Di®erently from Ang

and Bekaert, we focus here on issues of international diversi¯cation across small and large capitalization

¯rms. Guidolin and Timmermann (2004a) ¯nd strong evidence of time-variation in the joint distribution

of US returns on a stock market portfolio and portfolios re°ecting size- and value e®ects. Mean returns,

volatilities and correlations between these equity portfolios are found to be driven by regimes that introduce

short-run market timing opportunities for investors. However, their asset allocation exercises are limited

to menus including Fama and French's (1993) value- and size-tracking zero-investment portfolios, while in

our paper we are interested in a more standard optimal portfolio exercise in which positive net investments

in large and small cap equity portfolios are allowed.

Das and Uppal (2004) study the e®ects of infrequent price changes on international equity portfolios.

Equity returns are generated by a multivariate jump di®usion process where jumps are simultaneous and

perfectly correlated across assets. We also assume that regimes are perfectly correlated across stock port-

folio returns, but allow for persistence of regimes. While this prevents us from obtaining their simple

analytic results, it allows to compute portfolio allocations conditional on a given regime when the investor

anticipates the probability of a regime shift next period. While the ex-ante cost of overlooking shifts is

small both in Das and Uppal (2004) and in our paper, it is high when a normal state is prevailing. This

observation can be especially important for shorter-term investors, who tailor their allocations to the state.

This paper is organized as follows. Section 2 presents the portfolio choice problem and gives details

on the multivariate regime switching model used in this paper to represent the return process. Section 3

describes the data, while Section 4 reports our econometric estimates and provides an assessment of their

economic implications for portfolio choice. This section, presents the most meaningful results of the paper

and is organized around three sub-sections, each describing homogeneous sets of experiments for alternative

asset menus. Section 5 performs a number of robustness checks. Section 6 concludes.

2. The Model

2.1. Regimes in International Equity Returns

Many papers have found evidence of regimes in returns on individual stock portfolios (e.g., Ang and Bekaert

(2002), Perez-Quiros and Timmermann (2000), Ramchand and Susmel (1998), Turner, Startz and Nelson

(1989), Whitelaw (2001)). Similarly to Guidolin and Timmermann (2004b, 2005a), in this paper we extend

this literature to model the joint distribution of a vector of a portfolio returns, rt = (r1t, r2t, ..., rat)
0 over

some sample period t = 1, ..., T . Suppose that rt follows a regime switching process driven by a common

discrete state variable, St, which takes integer values between 1 and k:

rt = ¹st +

pX

j=1

Aj,strt¡j + "t. (1)

¹st = (µ1st , ..., µnst)
0 is a vector of mean returns in state st, Aj,st is an n £ n matrix of autoregressive

coe±cients at lag j in state st and "t = (ε1t, ..., εnt)0 » N(0,§st) is the vector of return innovations which

are assumed to be jointly normally distributed with zero mean and state-speci¯c covariance matrix §st .

Innovations to returns are thus drawn from a Gaussian mixture distribution. As pointed out by Marron

and Wand (1992), mixtures of normal distributions provide a very °exible family that can be used to

4



approximate numerous other distributions. They can capture skew and kurtosis in a way that is easily

characterized as a function of the mean, variance and persistence parameters of the underlying states.

They can also accommodate predictability and serial correlation in returns and volatility clustering since

they allow the ¯rst and second moments to follow a step function driven by shifts in the underlying regime

process, see Timmermann (2000).

Moves between states are assumed to be governed by the k £ k transition probability matrix, P, with

generic element pij de¯ned as

Pr(st = ijst¡1 = j) = pij , i, j = 1, .., k. (2)

Each regime is the realization of a ¯rst-order Markov chain. We allow St to be unobserved and treat it

as a latent variable. This captures the idea that investors do not know the true state even though the

time-series of returns frjg
t
j=1 provides partial information about the identity of the current state.

Importantly, the model (1) - (2) nests several popular models from the literature as special cases. In

the case of a single state, k = 1, we obtain a linear VAR model with predictable mean returns provided

that there is at least one lag for which Aj 6= 0. Such VAR models have become popular in the literature

on optimal asset allocation under predictable risk premia, see e.g. Campbell and Viceira (1999), and

Kandel and Stambaugh (1996). Absent signi¯cant autoregressive terms, the discrete-time equivalent of

the i.i.d. Gaussian model adopted as a benchmark by most of the literature on portfolio choices (see

e.g. Barberis, 2000 and Brennan and Xia, 2001) is obtained. In the following we conduct a thorough

speci¯cation process, i.e. we let asset returns data endogenously determine the number of regimes k, the

VAR order p, and possibly the presence of heteroskedasticity in the form of a regime-switching covariance

matrix for returns.

In the presence of multiple regimes (k ¸ 2) our model implies various types of predictability in the return

distribution. When regimes are persistent and mean returns, ¹st , di®er across states, expected returns vary

over time. Similarly, when the covariance matrices, §st , di®er across states there will be predictability in

higher order moments such as volatilities, correlations, skews and tail thickness. Predictability is therefore

not con¯ned to mean returns but carries over to the entire return distribution. E®ectively the return

distribution is calculated as a weighted average of the individual, state-speci¯c distributions using weights

that are updated as new return data arrive.

2.2. The Portfolio Choice Problem

Consider the `pure' asset allocation problem for an investor with power utility de¯ned over terminal wealth,

Wt+T , coe±cient of relative risk aversion γ > 0, and a time horizon T :

u(Wt+T ) =
W
1¡γ
t+T

1¡ γ
, (3)

The investor is assumed to maximize expected utility by choosing at time t a portfolio allocation to a

number a of international equity indices, !t, a a£1 vector. For simplicity we assume the investor has unit

initial wealth. Portfolio weights are adjusted every ϕ = T
B months at B equally spaced points t, t + T

B ,

t+2TB , ..., t+(B¡1)
T
B .When B = 1, ϕ = T and the investor simply implements a buy-and-hold strategy.

Let !b (b = 0, 1, ..., B¡1) be the portfolio weights on the risky assets at these rebalancing times. De¯ning
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WB ´Wt+T , under regular rebalancing the investor's optimization problem is therefore

max
fωjg

B¡1
j=0

Et

"
W
1¡γ
B

1¡ γ

#

s.t. Wb+1 =Wb!
0
b exp (Rb+1) (4)

Rb+1 ´ rtb+1 + rtb+2 + ...+ rtb+1

for b = 0, 1, ..., B¡1. Here exp (Rb+1) denotes a n£1 vector of exponentiated, cumulative returns. Under

continuously compounded returns, cumulative long-horizon returns may be found by simply additively

cumulating returns. The associated time (step) b derived utility of wealth function is then:

J(Wb, rb,µb,¼b, tb) ´ max
fωjg

B¡1
j=b

Etb

"
W
1¡γ
B

1¡ γ

#
. (5)

Here µb =

µn
¹i,b, fAj,i,bg

p
j=1,§i,b

ok
i=1
,Pb

¶
is a vector that collects the parameters of the regime switching

model (b is the time index while i is the regime index) and ¼b is the (column) vector of probabilities for

each of the k possible states, conditional on information at time tb.

We consider two distinct investment problems. The ¯rst rules out short-selling so that e0j!b 2 [0, 1]

(j = 1, ..., n) and !0b¶a = 1. Here ej is a a£ 1 vector of zeros with a 1 in the jth place and ¶a is a a£ 1

vector of ones. In the second problem short selling is allowed and there are no constraints on !b. Under

power utility, for γ 6= 1, the Bellman equation conveniently simpli¯es to

J(Wb, rb,µb,¼b, tb) =
W
1¡γ
b

1¡ γ
Q(rb,µb,¼b, tb). (6)

see. Ingersoll (1987, pp. 240-242). Investors' learning is incorporated in this setup by letting them optimally

update their beliefs about the underlying state at each point in time using the formula (Hamilton, 1994):

¼b+1(µ̂t) =

³
¼0b(µ̂b)P̂

ϕ
b

´0
¯ ´(rb+1; µ̂b)

[(¼0b(µ̂b)P̂
ϕ
b )
0 ¯ ´(rb+1; µ̂b))]0¶k

. (7)

Here ¯ denotes the element-by-element product, P̂ϕt ´
Qϕ
i=1 P̂t, and ´(yb+1) is the k£ 1 vector whose jth

element gives the density of observation rb+1 in the jth state at time tb+1 conditional on µ̂b:

´(rb+1; µ̂b) ´

2
66664

f(rb+1jsb+1 = 1, frtb¡jg
p¡1
j=0; µ̂b)

f(rb+1jsb+1 = 2, frtb¡jg
p¡1
j=0; µ̂b)

...

f(rb+1jsb+1 = k, frtb¡jg
p¡1
j=0; µ̂b)

3
77775

=

2
6666666666664

(2π)¡
N
2 j§̂¡11 j

1

2 exp

·
-12

³
rb ¡ ¹̂1 ¡

Pp¡1
j=0 Â1jrtb¡j

´0
§̂¡11

³
rb ¡ ¹̂1 ¡

Pp¡1
j=0 Â1jrtb¡j

´¸

...

(2π)¡
N
2 j§̂¡12 j

1

2 exp

·
-12

³
rb ¡ ¹̂2 ¡

Pp¡1
j=0 Â2jrtb¡j

´0
§̂¡11

³
rb ¡ ¹̂2 ¡

Pp¡1
j=0 Â2jrtb¡j

´¸

...

(2π)¡
N
2 j§̂¡1k j

1

2 exp

·
-12

³
rb ¡ ¹̂k ¡

Pp¡1
j=0 Âkjrtb¡j

´0
§̂¡11

³
rb ¡ ¹̂k ¡

Pp¡1
j=0 Âkjrtb¡j

´¸

3
7777777777775

(8)
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Such learning e®ects can be important since optimal portfolio choices obviously depend not only on future

values of asset returns, but also on future perceptions of the likelihood of being in each of the unobservable

regimes (¼tb+j). In practice, the state probabilities are updated in calendar time and not at the frequency

of the portfolio rebalancing.

Solving (4) by standard backward induction techniques is, unfortunately, a formidable task (see e.g.

the discussion in Barberis, 2000, pp. 256-260). Under standard discretization techniques the investor ¯rst

needs to use a su±ciently dense grid of size G, fµjb, ¼
j
bg
G
j=1 to update µb+1 and ¼b+1 from µb and ¼b. The

structure of the model in (1) and the implied regime-dependence of most of the parameters it implies, make

it obvious that dozens of parameters are likely to be required to adequately capture the joint distribution

of a relatively large vector of international stock portfolios returns. Standard numerical techniques are not

feasible for this problem or would at best force us to use a very rough discretization grid, introducing large

approximation errors. Therefore our approach simply assumes that investors condition on their current

parameter estimates, µ̂t. Under this assumption, since Wb is known at time tb, Q(.) simpli¯es to

Q(rb,¼b, tb) = max
ωb

Etb

"µ
Wb+1

Wb

¶1¡γ
Q (rb+1,¼b+1, tb+1)

#
. (9)

Portfolio choice will re°ect not only hedging demands for assets due to stochastic shifts in investment

opportunities but also a hedging motive caused by changes in investors' beliefs concerning future state

probabilities ¼tb+j.

2.3. Solution Methods

Ang and Bekaert (2002) were the ¯rst to study asset allocation under regime switching. They consider

pairs of international stock market portfolios under regime switching with observable states, so the state

variable simpli¯es to a set of dummy indicators. This setup allows them to apply quadrature methods

based on a discretization scheme (see also Guidolin and Timmermann, 2004a). Our framework is quite

di®erent since we treat the state as unobservable and calculate asset allocations under optimal ¯ltering (7).

To deal with the latent state we use Monte-Carlo methods for integral (expected utility) approximation.

For a buy-and-hold investor with ϕ = T , we follow Barberis (2000) and approximate the integral in the

expected utility functional as follows:

max
ωt

N¡1
NX

n=1

8
><
>:

h
!0t exp

³PT
i=1 rt+i,n

´i1¡γ

1¡ γ

9
>=
>;
. (10)

Here !0t exp
³PT

i=1 rt+i,n

´
is the portfolio return in the n-th Monte Carlo simulation. Each simulated path

of portfolio returns is generated using draws from the model (1)-(2) that allow regimes to shift randomly

as governed by the transition matrix, P. We use N = 30, 000 simulations.6 The appendix provides further

details on the numerical techniques employed in the solutions.

We next consider the asset allocation of an investor who adjusts portfolio weights every ϕ < T months.

We numerically solve the Bellman equation. For concreteness we brie°y discuss here the case in which

6Experiments with similar problems in Guidolin and Timmermann (2004b) indicated that for a = 4, a number of simulations

N between 20,000 and 40,000 trials delivers satisfactory results in terms of accuracy and minimization of simulation errors.
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p = 0, which simpli¯es the state vector to the state probabilities π only. Appendix A gives further details.

We discretize the compact [0, 1] interval that de¯nes the domain of each of the state variables on G equi-

distant points. Backward induction methods can then be used as follows.7 Suppose that Q (¼b+1, tb+1) is

known at all points ¼b+1 = ¼
j
b+1, j = 1, 2, ..., G

k¡1. This will be true at time tB ´ t+T as Q(¼
j
B, tB) = 1

for all values of ¼jB on the grid. Then we can solve (4) to obtain Q (¼b, tb) by choosing ωb to maximize

Etb

h©
!0b exp(Rb+1,n(sb))

ª1¡γ
Q(¼jb+1, tb+1)

i
.

The multiple integral de¯ning the conditional expectation is calculated by Monte Carlo methods. For

each ¼b = ¼
j
b, j = 1, 2, ..., Gk¡1 on the grid we draw in calendar time N samples of ϕ¡period returns

fRb+1,n(sb)g
N
n=1 from the regime switching model, where Rb+1,n(sb) ´

Pϕ
i=1 rtb+i,n(sb). The expectation

is then approximated as

N¡1
NX

n=1

h©
!0b exp(Rb+1,n(sb))

ª1¡γ
Q(¼

(j,n)
b+1 , tb+1)

i
,

where ¼
(j,n)
b+1 denotes the element ¼

j
b+1 on the grid used to discretize the state space that is closest to

¼b+1,n =

³
¼0bP̂

ϕ
b

´0
¯ ´(rb+1; µ̂t)

[(¼0bP̂
ϕ
b )
0 ¯ ´(rb+1; µ̂t))]0¶k

,

using the distance measure
Pk¡1
i=1 j(¼

j
b+1)

0ei ¡ (¼b+1,n)
0eij. Starting from time tB¡1, we work backwards

through the B rebalancing points until !̂t ´ !̂0 is derived.

2.4. Welfare Cost Measures

At several points in this paper we will require a uni¯ed way to quantify the utility costs of somehow

restricting the investor's asset allocation problem. In these situations, we follow Ang and Bekaert (2002),

Ang and Chen (2002), and Guidolin and Timmermann (2004a,b) to obtain estimates of the compensatory

variation. Call !̂Rt the vector of portfolio weights obtained imposing restrictions on the portfolio choice

problem. For instance, !̂Rt may be the vector of optimal asset demands when the investor is forced to ignore

the existence of regime shifts. We aim at comparing the investor's expected utility under the unrestricted

model ¡ leading to some optimal set of controls !̂t ¡ to that derived assuming the investor is constrained

to choose at time t the restricted optimum, !̂Rt . De¯ne now V (Wt, rt; !̂t) the optimal value function of

the unconstrained problem, and V (Wt, rt; !̂
R
t ) the constrained optimal value function. Since a restricted

model is by construction a special case of a more general, unrestricted model, the following holds:

V (Wt, rt; !̂
R
t ) · V (Wt, rt; !̂t).

We compute the compensatory premium, πRt , that an investor with risk aversion coe±cient γ is willing to

pay to obtain the same expected utility from the constrained and unconstrained problems as:

πRt =

·
V (Wt, rt; !̂t)

V (Wt, rt; !̂
R
t )

¸ 1

1¡γ

¡ 1. (11)

7For instance, when G = 11 the points are de¯ned as 0, 0.1, 0.2, ..., 1 and a (k ¡ 1)-dimensional grid on a maximum of

Gk¡1 points is built. The grid has fewer than Gk¡1 points since each of the points satis¯es πjbιk = 1, j = 1, 2,..., G
k¡1.
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The interpretation is that an investor, if endowed with an initial wealth of (1 + πRt ), would tolerate

to be constrained to solve some kind of restricted asset allocation problem leading to V (Wt, rt; !̂
R
t ) ·

V (Wt, rt; !̂t) only. Several types of restrictions are analyzed in what follows. For simplicity, we limit

ourselves to consider buy-and-hold strategies.8

3. Data

We use weekly data from the MSCI total return indices data base for Paci¯c, North American, European

Small Caps and European Large Caps (MSCI Europe Benchmark). Returns on North American Large

Caps are computed as a weighted average of the MSCI US Large Cap 300 Index and the D.R.I. Toronto

Stock Exchange 300, using as weights the total relative capitalizations of the US and Canada on the world

total.9 In practice, the US large caps index receives a weight of 94.4% vs. a 5.6% for the Canadian index.

We use total return data series, inclusive of dividends, adjusted for stock splits, etc. Returns are

expressed in the local currencies (or weighted averages thereof) as provided by MSCI. This implies a ¡ in

fact rather common, see e.g. De Santis and Gerard (1997), Ang and Bekaert (2002) and Butler and Joaquin

(2002) ¡ assumption that our investor is sophisticated enough to fully hedge her currency positions, so

that her wealth/consumption patterns are unrelated to the dynamics of the exchange rate between the

national and foreign currencies.

The sample period is January 1, 1999 - June 30, 2003. A Jan. 1, 1999 starting date for our study

is justi¯ed by the widespread evidence of substantial portfolio reallocations induced by the disappearing

currency risk in the European Monetary Union (Galati and Tsatsaronis, 2001; European Central Bank,

2001). Given the relatively short sample period enforced by the `Euro structural break' in an asset menu

that includes European stock returns, we employ data at a weekly frequency, which anyway guarantee the

availability of 234 observations for each of the series. Furthermore, notice that our sample does straddle

one complete stock market cycle, capturing both the last months of the stock market rally of 1998-1999, its

fall in March 2000, the crash of September 11 2001, and the subsequent, timid recovery. This cycle clearly

appears in the time series plots of cumulative total returns in ¯gure 1.

Tables 1 and 2 report basic summary statistics for stock returns. Since about half of our sample is

characterized by bear markets, average mean returns are low or even negative for all portfolios under

consideration. However ¡ as discussed in the Introduction ¡ small caps represent an exception. In

particular, European small caps are characterized by a non-negligible annualized 14.4% positive median

return, followed by North American small caps with 12.8% per year.10 The resulting (median-based)

Sharpe ratios for small capitalization ¯rms make them highly appealing in a portfolio perspective: North

American small caps display a 0.59 Sharpe ratio, while European small caps score a stunning 0.89.

8These provide lower bounds for welfare costs, see e.g. Guidolin and Timmermann (2004b). As a matter of fact, under

dynamic rebalancing predictability gives an investor a chance to aggressively act upon the information on the state; therefore

ignoring predictability when rebalancing is possible implies even higher (sometimes enormous) utility costs. Similarly, assets

with di®erent stochastic processes are the more useful the more frequently information is received and exploitable; therefore

restricting the asset menu under frequent rebalancing generally implies higher welfare loss than under buy-and-hold.
9While the MSCI Europe Benchmark index targets mainly large capitalization ¯rms, no equivalent for North America (i.e.

US and Canada) is available from MSCI.
10The size premium in Europe has been documented by Annaert et al. (2002) using monthly data drawn from large samples

dating back to 1976. Notice that we use the median of returns as estimators of location: for variables characterized by

substantial asymmetries (negative skewness), the median is a more representative location parameter than the mean.
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On the other hand, table 1 leads immediately to question the validity of an approach that relies only on

the sign and/or ratio of location and scale statistics. First, while small caps have good Sharpe ratios and

give positive mean returns, their full-sample estimates of higher order moments may turn out disappointing

results for an investor with standard (not necessarily mean-variance) preferences: their skewness is negative,

indicating that there are asymmetries in the marginal density that make negative returns more likely than

positive ones; their kurtosis is high, in excess of the Gaussian benchmark (3), indicating that extreme

realizations are also more likely than in a simple Gaussian i.i.d. framework. Second, opposite remarks

apply to other stock indices, in particular the North American large caps and Paci¯c ones: their skewness

is positive, which may be seen as an expected utility-enhancing feature by many investors; their kurtosis

is rather moderate, close to what a Gaussian i.i.d. framework implies. These remarks obviously make

it obvious how important it is to try and provide a quantitative assessment to the main question of this

paper: When and how much do higher order moment properties and variance risk (or the lack thereof)

matter for optimal asset allocation?

The last two columns of the table reveal that while the evidence for serial correlation in levels is limited

to European and small caps portfolios, the evidence of volatility clustering ¡ i.e. the tendency of squared

returns to concentrate over limited periods ¡ is widespread, which points to the possible need of models

that capture heteroskedastic patterns.

Finally, table 2 reports the correlation coe±cients of portfolio returns. It is interesting to see that

Paci¯c stock returns have structurally lower correlations (around 0.4 - 0.6 only) with other portfolios than

all other pairs in the table. In principle, this feature makes of Paci¯c stocks an excellent hedging tool. All

other pairs display correlations in the order of 0.7 - 0.8, which is fairly high but also expected in the light

of the evidence in the literature that all major international stock markets are become increasingly prone

to synchronous comovements (e.g. Longin and Solnik, 1995).

4. International Portfolio Diversi¯cation

In this section, we present the main results of the paper. The section is organized around three sub-sections,

each devoted to a distinct asset menu. In each case, we start by presenting and discussing econometric

estimates of multivariate regime switching models and proceed then to calculate and interpret optimal

portfolio weights. The sequence of asset menus is as follows: ¯rst, we set up a benchmark by studying

a traditional portfolio problem in which the asset menu is restricted to Paci¯c, North American large

caps and European large caps equity portfolios (a = 3). The idea is to familiarize with the econometric

framework and with the type of asset allocation results it can provide. Next, we allow our investor to

buy European small caps (a = 4). The choice to expand the asset menu leveraging on European small

caps ¯rst is justi¯ed by their high ratio between median returns and their standard deviation. However,

European small caps are also the stock portfolio exhibiting the worst third and fourth moment properties.

Hence it is natural to start our investigation from this portfolio. Finally, we further expand the asset menu

and add to our North American large stocks equity portfolio the MSCI North American small portfolio

(a = 5). Obviously, this third exercise maximizes the chances for small stocks to play an important role in

diversi¯cation terms, especially because North American and European small caps appear to be imperfectly

correlated (0.73 from table 2). For the time being we impose no-short sale restrictions; this assumption

is removed in Section 5. Similarly, we focus initially on the simpler buy-and-hold case (see e.g. Barberis,
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2000) but proceed then to analyze dynamic results in Section 5.

4.1. Benchmark Results: Restricted Asset Menu

4.1.1. Model selection and estimates

Table 3 reports the results of a model speci¯cation search concerning the case in which the asset menu

consists of European large caps, North American large, and the Paci¯c equity portfolios (a = 3). In practice

we estimate a variety of multivariate regime switching models, including the special cases in which k = 1

(no regimes), p = 0 (no VAR), and the model has a regime-independent, time-invariant covariance matrix

(homoskedasticity).11 Clearly, k = 1 and p = 0 result in a IID multivariate Gaussian model that implies

the absence of predictability. Otherwise, our model search allows for k = 1, 2, 3, and 4, for p = 0, 1, 2, and

entertains both homoskedastic and heteroskedastic models.

In table 3, three di®erent statistics prove helpful for model speci¯cation purposes are reported. The

fourth column shows for all estimated models the likelihood ratio (LR) statistic for the test of k = 1,

when the model reduces to a homoskedastic Gaussian VAR(p). In this case a number of parameters are

not identi¯ed under the null hypothesis of k = 1, so that asymptotically the LR test has a non-standard

distribution. Similarly to Guidolin and Timmermann (2005a,b) we therefore report corrected, Davis (1977)-

type upper bound for the associated p-values ¡ i.e. we adopt a conservative approach that escapes nuisance

parameter problems. The table shows that most regime switching models (k ¸ 2) do a better job than

simpler linear models at capturing the salient features of the joint density of the stock returns data. We

conclude that the null of linearity ¡ i.e. the absence of non-linearities in the form of regime switching

¡ in international stock returns data is resoundingly rejected. This is similar to the ¯ndings in Ang and

Bekaert (2001) and Ramchand and Susmel (1998).

The ¯fth and sixth columns of table 3 present two information criteria, the Bayesian (BIC) and Hannan-

Quinn (H-Q) statistics. Their purpose is allow the calculation of synthetic measures trading-o® in-sample

¯t (in terms of maximized log-likelihood) against parsimony (number of parameters estimated) and hence

out-of-sample forecasting accuracy. By construction, the best performing model ought to minimize such

criteria. Importantly, in this case we obtain that the same model minimizes both the BIC and the H-

Q criteria. This is achieved by a relatively simple and parsimonious (20 parameters vs. a total of 702

observations) model with k = 2, p = 0, and regime-dependent covariance matrix.

Table 4 details the MLE parameter estimates in panel B.12 Looking at the sign and size of the estimated

means, we can label the two regimes as `normal' and `bear', in the sense that mean returns are negative

and relatively large in the second state (in the order of -0.002 to -0.005 per week, i.e. -10% to -25% on an

annualized basis). However, estimated means are never signi¯cant, which is not a new ¯nding in the regime

switching class (see Ang and Bekaert, 2001). On the opposite, second moments are precisely estimated.

This suggests that the two regimes are more accurately characterized by their second moments than by the

¯rst ones. The normal/stable state is then a very persistent regime (average duration exceeds 6 months)

11Estimation of the model is relatively straightforward and proceeds by optimizing the likelihood function associated with

our model. Since the underlying state variable, st, is unobserved we treat it as a latent variable and use the EM algorithm to

update our parameter estimates, c.f. Hamilton (1989).
12Panel A reports as a benchmark the corresponding k = 1 model, a simple trivariate IID Gaussian framework in which

both means and covariances are time-invariant.
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implying moderate volatilities (roughly 17-18% on annualized basis) and high correlation across pairs of

stock indices. The bear/volatile state is less persistent (its average duration is only 9 weeks) and implies

much higher volatilities (as high as 40% a year in the case of European large caps).

Figure 1 deepens our understanding of the non-linearities implied by the estimated model by plotting

the full-sample (i.e. ex-post), smoothed state probabilities of the two states over the sample period. In

particular, the bear/volatile probabilities peak in correspondence to turbulent periods (e.g. the Winter

of 2000, at the peak of the tech rally of the late 1990s) and to situations of rapidly declining prices (e.g.

September 11, 2001 and the drop in prices of the ¯rst part of 2002). Overall, the ¯gure gives the impression

of international equity markets smoothly cycling between extended periods (the associated ergodic, long-

run frequency is 73%) of normal, stable markets and shorter (their ergodic frequency is 27%) bursts of

volatile and declining prices.

4.1.2. Implied portfolio weights

We describe and discuss two sets of portfolio weights estimates. A ¯rst exercise computes optimal asset

allocation at the end of June 2003 for an investor who, using all past data for estimation purposes, has

obtained the ML parameter estimates in table 4. This is a simulation exercise in which the unknown model

parameters are calibrated to coincide with the full-sample estimates. Clearly, such type of an exercise

may disappoint some Readers, as the resulting assessment of the role played by small caps in international

diversi¯cation may dramatically depend on the peculiar set of parameter estimates one obtains on the

available data. As a result, we supplement this ¯rst exercise with calculations of real time optimal portfolio

weights, each vector being based on a recursively updated set of parameter estimates.

Figure 2 shows optimal portfolio shares as a function of the investment horizon for a buy-and hold

investor who employs parameter estimates obtained as of the end of June 2003. Results for two alternative

levels of the coe±cient of relative risk aversion are reported, γ = 5 and 10. Each plot concerns one of

the available equity portfolios and reports ¯ve alternative schedules: two of them condition on knowledge

of the current, initial state of the markets (normal or bear); two other schedules imply the existence of

uncertainty on the nature of the regime, by assuming that either all regimes are identically weighted or

that their probabilities match their long run, ergodic frequencies (in this case 0.73 and 0.27, for normal

and bear states); one last schedule depicts the optimal choice by a myopic investor who incorrectly believes

that international stock returns are drawn by a multivariate Gaussian IID model with time invariant means

and covariance matrix.13 Oddly, European large caps would be completely ignored by investors with mild

risk aversion. The only demand for European large stocks is generated for γ = 10 and the normal state,

when the variance of European large stocks is particularly small. Investors should otherwise demand North

American large and Paci¯c stocks. North American large stocks are more attractive in the short-run and

in the bear state (regime 2) when their mean returns are negative but also higher than all other stock

portfolios. However, as the horizon T grows, the weight in North American large stocks generally declines

(with the exception of regime 1). Opposite considerations apply to Paci¯c stocks. As a benchmark, the

optimal weight to North American large stocks is 33% at a one-week horizon and declines to 16% at two

13These schedules are completely °at, i.e. they imply that the investment horizon is irrelevant for asset allocation purposes.

From the seminal papers by Samuelson (1969) and Merton (1969) it is well-known that this is the case for multivariate IID

processes in which returns are not predictable.
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years; the complement to 100% is invested in Paci¯c equities.

In the normal state, the slopes are reversed: the North American schedule becomes upward sloping

while the Paci¯c one is downward sloping. This occurs because Paci¯c stocks have the highest Sharpe ratio

in the normal state, but the probability of a switch from the normal to the bear regime increases over time

thus justifying increased caution towards this stocks. Importantly, there are marked di®erences between

the regime-switching portfolio weights and the IID benchmark that ignores predictability, especially for the

case of the normal regime when γ = 5: while the IID weights are 38% in North American large stocks and

62% in Paci¯c stocks, the regime- and horizon-dependent optimal choices assign much less weight to the

former portfolio (the di®erence is almost 20% at long horizons when the comparison is performed with the

steady-state schedule).14 Both the presence of well-de¯ned slopes in investment schedules and di®erences

between portfolios across the regime switching and IID cases have been described in a di®erent context by

Guidolin and Timmermann (2004b).

Figure 3 shows the welfare costs of ignoring regimes and adopting instead a simpler, IID no-predictability

benchmark. These estimates are important as they attach an `economic' price to the di®erences in optimal

portfolio weights between regime-switching and IID case. Clearly, the welfare costs strongly depend on the

assumed initial state as well as risk-aversion, being higher under moderate values for γ and in regime 1

(normal). However what matters the most is the order of magnitude: while the bear state does not seem

to imply particularly high welfare loss,15 an investor who ignores the initial regime and purely conditions

on long-run ergodic probabilities would `feel' a long-run (for T = 2 years) welfare loss of almost 20% of her

initial wealth. This estimate is large and stresses that regimes should not be ignored when approaching

international diversi¯cation problems.

Unfortunately, ¯gure 2 does not easily reveal how sensitive portfolio choice is to the arrival of new

information on the prevailing regime. In order to shed light on this issue, we recursively estimate the

parameters of the regime switching model with data covering the expanding samples Jan. 1999 - Dec.

2001, Jan. 1999 - ¯rst week of Jan. 2002, etc. up to the full sample Jan. 1999 - June 2003 previously

employed. For simplicity, we stick to the MSIH(2,0) as the selected regime switching model. Figure 4 plots

recursive optimal portfolio weights for γ = 5 and 10 and for ¯ve alternative investment horizons spanning

the range 1 week - 2 years previously employed. As a benchmark, we also plot as a solid bold line the

IID, myopic asset allocation.16 The plot clearly shows that our previous remarks are not an artifact of

the particular sample period we have selected: The demand for Paci¯c stocks is relatively stable, both

over time and over investment horizons. Even though European large caps have become less and less

attractive over time, as the incidence of the bear state has increased, their demand is always limited and

mostly concentrated on the long-horizon segment. Additionally, we notice considerable variation of optimal

weights over time, although most of the changes do appear for short investment horizon, which is consistent

with the agent paying attention to the regime-speci¯c density characterizing asset returns. In fact, notice

14Notice that there is no reason to think that the IID schedule ought to be an average of the regime-speci¯c ones: the

unconditional (long-run) joint distribution implied by a Gaussian IID and a multivariate regime switching model need not be

the same; on the opposite, our speci¯cation tests o®er evidence that the null of a Gaussian IID model is rejected, an indication

that the unconditional density of the data di®ers from the one implied by a switching model.
15Indeed the bear regime implies portfolio weights that fall very close to the IID ones.
16In this case time variation of portfolio weights is simply imputable to the recursive updating of the ML parameter

estimates of means, variances, and covariances. On the contrary, in the regime-switching case the time variation is caused

both by parameter updating and by recursive revision of the probability of the prevailing state.
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that the two columns of plots are rather similar, although movements are more accentuated for T = 1 and

4 weeks and for γ = 5, when the investor is more sensitive to revisions in estimated means.17

These results set up the background against which we proceed to measure the variance and higher

moment risk characterizing small caps. When the asset menu is restricted to European and North American

large caps only (besides an overall Paci¯c portfolio), international diversi¯cation is substantial both in end-

of-sample simulations and in real time experiments, although the highest proportions go to North American

large and Paci¯c equities. This result echoes De Santis and Gerard's (1997) multivariate GARCH results

for a larger set of national equity indices. The welfare costs of ignoring regime switching (in favor of a

non-predictability model) are non-negligible and support our claim that shifts in the ¯rst two moments of

the joint distribution of returns play a crucial role in portfolio decisions. Next, we proceed to the main

question of this paper: should small caps play a major role in international portfolio decisions?

4.2. Diversifying with European Small Caps

4.2.1. Model selection and estimates

Table 5 repeats our model speci¯cation search with reference to a model with four equity portfolios:

European large and small stocks, North American large, and Paci¯c. Since a = 4, even models identical to

those estimated in table 3 imply a di®erent number of parameters, as the dimension of the relevant vectors

and matrices changes. Also in this case, the evidence against the null of a linear, IID Gaussian model is

overwhelming in terms of likelihood ratio tests, even when p-values are adjusted in the manner explained

in Section 4.1.1. The information criteria provide contrasting indications: while the H-Q sides for a rather

`expensive' (in terms of number of parameters, 52) two-regime model with a VAR(1) structure, the BIC is

`undecided' between a homoskedastic three-regime model and a heteroskedastic one (in both cases p = 0).

Given the pervasive evidence of volatility clustering in table 1 (see the Ljung-Box statistic for squared

returns) ¡ which is unsurprising in weekly data ¡ we select the latter MSIH(3,0) model.18

Table 6 (panel B) reports ML parameter estimates (as well as an IID benchmark, panel A). The model

implies a very intuitive characterization of the three regimes. In this case most of the estimated mean

returns are highly signi¯cant and their occasional lack of signi¯cance greatly helps to identify one of the

regimes. Di®erently from the model in table 4, the three-state model has now tight implications for both

means and covariance matrices in the di®erent regimes. The dominant state, at least in terms of long-

run ergodic probabilities, is the second, which we label normal regime. In this state, mean returns are

essentially zero, volatilities are moderate (around 15% a year for all portfolios), correlations are high. This

regime is highly persistent with an average duration in excess of 7 months. Undoubtedly, between 1999

and 2003 markets have spent most of the time in this type of regime, with negligible trends and waiting

for news of one sign or the other. In fact, the ergodic long-run probability of the normal regime is 72%.

When the international equity markets are not in a normal state, there are two possibilities. With

17We also compute recursive estimates of the utility costs of ignoring regimes and observe that for long enough horizons

the loss oscillates between 1 and 3 percent in annualized terms over most of the sample. Consistently with results in ¯gure 3,

peaks of 5 percent (in annual terms) and higher are reached in correspondence to periods characterized as a bear state (e.g.

the Summer of 2002).
18The MSIH(3,0) model implies the estimation of 48 parameters, although with 936 observations this still amount to a

reasonable saturation ratio of 936/48 = 19.5, i.e. roughly 20 observations per parameter.
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an (ergodic) probability of 13%, they are in the ¯rst, bear regime, when mean returns are negative and

signi¯cant across all portfolios. European large caps seem to be particularly prone to large downturns, as

their bear mean is -5% per week. The bear regime is also a high-volatility state: the variance of all portfolio

drastically increases when markets switch from normal to bear states, with peaks of volatility in excess of

21% per year (for European stocks). Interestingly, some of the implied correlations strongly decline when

going from regime 2 to 1, with Paci¯c stocks being almost uncorrelated with both North American and

European large caps. However, the persistence of regime 1 is low: starting from a bear state there is only

a 22% probability of staying in such a state. As a result, the average duration of such a state is less than 2

weeks. This ¯ts the common wisdom that sharp market declines happen suddenly and tend to span only a

few consecutive trading days. Figure 5 helps us once to more to visualize the nature of regime 1 as a bear

state: it occurs relatively frequently in our sample (e.g. the week of September 11, 2001 is picked up by

this state) but it rarely lasts more than 3 weeks.

The rest of the time (15%), international equity markets ¯nd themselves in a bull regime in which

mean returns are positive, high, and signi¯cant. Also in this case, European large caps are characterized

by the highest mean, 3.7% in a week. Once more, volatility is high in the bull regime: this is true for

all markets, although the wedge vs. the normal volatilities are extreme for both large caps portfolios, for

which the bull volatility is almost twice the normal one (e.g. 27% in annualized terms for European large

caps). Correlations decline when compared to the normal regime. Those implying Paci¯c stocks become

systematically negative, which obviously makes of Paci¯c equities an excellent hedge in this regime. The

bull regime has low persistence, with a `stayer' probability of 29% only and an average duration of less

than 2 weeks. Figure 5 supports these remarks but also raise an intriguing suspicion: bull states tend to

cluster in the same periods in which bear states appear. The fourth plot in ¯gure 5 makes this claim clear:

for each period in the sample, we proceed to sum the smoothed probability of regimes 1 and 3. This gives

an ex-post estimate of the total probability of being in a high volatility state. We ¯nd that although bull

and bear regimes are non-persistent, the overall `high volatility' regime is. It captures periods which are

now known as extremely volatile, e.g. early 2001 with the accounting scandals in the US or the Fall of

2001, after the terror attacks to New York City. This is con¯rmed by the special structure of the estimated

transition matrix in table 5: notice that although the `stayer' probabilities of regimes 1 and 3 are small,

they both have rather high probabilities (0.78 and 0.54, respectively) of switching from bear to bull and

from bull to bear. This means that extended periods of time may come to be characterized by highly

volatile returns, although the signs of the underlying means may be quickly switching back and forth.19,20

4.2.2. Implied portfolio weights

At face value, it seems that the role of European small caps (henceforth EUSC) in portfolio choice may

strongly depend on the regime: EUSC have the best and second-best Sharpe ratios in the normal and bull

19In practice, table 5 implies that it is rather unlikely that a bear state be followed by normal conditions. Normally markets

will `rebound' by going through 1-3 weeks of bull conditions. The bull state is then more likely to be followed by calmer,

highly correlated markets, since the probability of a switch from regime 3 to 2 is 0.17.
20Readers may be concerned for the equilibrium justi¯cation of the existence of a state with negative stock returns. However

¡ unless all investor have 1-week investment horizons ¡ this does not imply a zero or negligible demand for stocks, as for

longer horizons switching to better states with zero or positive mean returns is not only possible, but almost sure provided

the horizon is long enough.
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states (a non-negligible 0.21 and a stellar 0.77, respectively), and display the worst possible combination

(negative mean and high variance) in the bear state. However, it is not clear how these contrasting

information may in°uence the choices of some investor who cannot observe the state. Furthermore, notice

that speculating on the Sharpe ratio to trace back portfolio implication may be grossly incorrect when

portfolios have adverse higher-moment properties featuring high variance risk.

Figure 6 shows the end-of-sample portfolio results as a function of the usual parameters, i.e. risk

aversion, investment horizon, and assumptions on the initial regime. The demand for EUSC is essentially

100% independently of the horizon and of γ when the state is normal. Independence of the horizon is

justi¯ed by the fact that the normal state is highly persistent. The schedule for the bull state provides

on the other hand evidence that using the Sharpe ratio may be grossly misleading: in regime 3 EUSC are

never demanded as all the weight is given to North American large and Paci¯c stocks (plus European large

caps for horizons between 1 and 3 weeks). Even though European large stocks do have the best Sharpe

ratio in the bull state, the intuition behind the ¯nding that their demand does not survive the test of longer

(and more plausible) horizons T, is that while North American large caps still provide a respectable 0.62

Sharpe ratio, Paci¯c stocks provide their perfect hedge. Unsurprisingly, EUSC fail to enter the optimal

portfolio in the bear state (North American and Paci¯c stocks still dominate the rational decision).

Even more interesting is the result concerning the `steady-state' allocation to EUSC, when the investor

does not know the regime and assumes that all regimes are possible with a probability equal to their long-

run measure. In this case ¡ the most realistic in applications, since regimes are in fact not observable ¡

EUSC play a very limited role. Their weight is actually zero for short horizons (T = 1, 2 weeks) and grows

to an unimpressive 10% for longer horizon. Once more, the steady-state portfolio puts almost identical

weights on North American and Paci¯c equities. On the opposite, the IID myopic portfolio would be grossly

incorrect, when compared to the steady-state regime switching weights, as it would place high weights on

EUSC (87%) and Paci¯c stocks (13%). Finally, European large caps keep playing a modest role.

Figure 7 shows our estimates of the welfare costs of ignoring regimes. Since ¯gure 6 stresses the existence

of important di®erences between regime-switching and IID myopic weights, it is less than surprising to see

that the utility loss from ignoring predictability is of a ¯rst-order magnitude: for instance, a relatively

risk-averse (γ = 10), long-horizon (T = 2 years) investor who ignores the nature of the current regime

would be ready to ignore regimes if compensated by a lump-sum, riskless increase equal to roughly 4% of

her initial wealth. These estimates are of course much larger should we endow the investor with precise

information on the nature of the current state (especially when the information is pro¯table, as it is in

the bear and bull regimes), as the welfare loss climbs to 15-20% of wealth. Even when the asset menu is

enlarged to include EUSC, there seems to be no good reason for ignoring regime shifts.

These results do not seem to entirely depend on the point in time in which they have been performed.

We recursively estimate our three-state model and compute optimal portfolio weights similarly to Section

4.1.2. The average (over time) weight assigned to EUSC remains only approximately 39%, while also

European large caps acquire substantial importance (26%), followed by North American large and Paci¯c

stocks (23 and 12%).21 Also in this case, ignoring regime switching would assign way too high a weight on

21These numbers are also averaged across investment horizons, although slopes tend to be moderate, consistently with the

shapes reported in ¯gure 6. These ¯gures are for the γ = 5 case. Under γ = 10, they are 36, 23, 26, and 15 percent. Plots

similar to those in ¯gure 4 are available upon request.
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EUSC, in excess of 80% on average (the rest goes to Paci¯c stocks). As a result, our recursive estimates of

the welfare loss of ignoring regime switching (not reported) become extremely large over certain parts of the

sample, exceeding annualized compensatory variation of 5-10% even under the most adverse parameters

and investment horizons.

4.2.3. Making sense of the results: variance risk

Our simulations ¯nd that under realistic assumptions concerning knowledge of the initial state, a rational

investor should invest rather a limited proportion of her wealth in EUSC despite their high median Sharpe

ratio. Tables 7 and 8 report several statistical ¯ndings that help us put this result into perspective. Several

recent papers (Das and Uppal, 2004; Jondeau and Rockinger, 2003: Guidolin and Timmermann, 2005b)

have stressed that investor with power utility functions are not only averse to variance and high correlations

between pairs of asset returns ¡ as normally recognized ¡ but also averse to negative co-skewness and

to high co-kurtosis, i.e. to properties of the higher order co-moments of the joint distribution of asset

returns.22 For instance, rational investors will dislike assets the returns of which tend to become highly

volatile at times in which the price of most of the other assets (or some reference portfolio of other assets)

declines: in this situation, the expected utility of the investor is hurt both by the low expected mean

portfolio returns as well as by the high variance contributed by the asset.23 Similarly, investors ought to be

suspicious of assets the price of which declines when the volatility of most other assets increases. Investors

will also dislike assets the volatility of which increases when most other assets are also volatile. We say

that an asset that su®ers from this bad higher co-moment properties is subject to high variance risk.

Tables 7 and 8 clearly pin down these undesirable properties of EUSC. In table 7 we calculate the

co-skewness coe±cients,

Si,j,l ´
E[(ri ¡E[ri])(rj ¡E[rj])(rl ¡E[rl])]

fE[(ri ¡E[ri])2]E[(rj ¡E[rj ])2]E[(rl ¡E[rl])2]g1/2
,

between all possible triplets of portfolio returns i, j, l. We do that both with reference to the data (for which

sample moment estimates of numerator and denominator can be found) as well for the three-state model

estimated in Section 4.2.1. In the latter case, since closed-form solutions for higher order moments are

hard to come by in the multivariate regime switching case, we employ simulations to produce Monte Carlo

estimates of the (unconditional) co-moments under regime switching. Based on our discussion, variance

risk relates to the cases in which the triplet boils down to a pair, i.e. either i = j, or i = l, or j = l.24 When

i = j = l we will be looking at the standard own skewness coe±cient of some portfolio return. In table

7, bold coe±cients highlight signi¯cant estimates. Clearly, there is an amazing correspondence between

signs and magnitudes of co-skewness coe±cients in the data and the unconditional estimates under our

estimated regime switching model. Similarly to Das and Uppal (2004) we interpret this result as a sign of

22Of course, as a special case of this we have also that power utility investors will dislike the own negative skewness and the

own (excess) kurtosis of univariate asset returns series (see Guidolin and Timmermann, 2004c and references therein).
23This is the case in the model of Vayanos (2004), where fund managers are subject to uncertain withdrawals in bear

markets.
24Coe±cient estimates for the cases in which i 6= j 6= l are available but remain hard to interpret. However, they can still

be very useful for assessing potential misspeci¯cation problems with a given model. Our comments concerning the general

agreements between sample and model-implied co-moment estimates also extend to the i 6= j 6= l case.
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correct speci¯cation of the model.25 Furthermore, notice that the co-skewness coe±cients SEUSC,EUSC,j

are all negative and large in absolute value for all possible js: the volatility of EUSC is indeed higher

when each of the other portfolios performs poorly. On the opposite, the similar co-skewness coe±cients for

most other indices (e.g. SEU large,EU large,j for varying js) are close to zero and sometimes even positive.

Worse, a few of the SEUSC,j,j coe±cients are also large and negative (when j = Paci¯c), an indication that

EUSC may be losing ground exactly when some of the other assets become volatile. Therefore EUSC does

display considerable variance risk. On the top of variance risk, from tables 1 and 7 it emerges that EUSC

also show high and negative own-skewness (i.e. left asymmetries in the marginal distribution which imply

higher probability of below-mean returns), another feature a rational risk-averse investor ought to dislike.

Of course, it might be hard to balance o® co-skewness coe±cients involving EUSC with di®erent mag-

nitudes or signs. In these cases, it is sensible to calculate quantities similar to those appearing in table

7 for portfolio returns vs. some aggregate portfolio benchmark. For our purposes we use a plain equally

weighted portfolio (EW ptf , 25% in each stock index), although results proved fairly robust to other

notions of benchmark portfolio. Once more the match between data- and model-implied coe±cients is

striking. In particular, in panel A of table 8 we obtain model estimates SEUSC,EUSC,EW ptf = ¡0.60 and

SEUSC,EW ptf,EW ptf = ¡0.44, i.e. the variance of EUSC is high when equally weighted returns are be-

low average, and EUSC returns are below average when the variance of the equally weighted portfolio is

high. This is another powerful indication of the presence of variance risk plaguing EUSC. For comparison

purposes, in panel B of table 8 we repeat calculations for European large stocks and obtain negligible (or

even positive) coe±cients.26 Therefore while the demand for European large caps is modest because of

their low Sharpe ratios (with the exception of the bull state and T = 1, 2 weeks), the demand for EUSC

is essentially limited by their poor third-moment properties, in particular by their asymmetric marginal

density and variance risk.

The co-skewness SEUSC,EUSC,EW ptf is reminiscent of the covariance between EUSC illiquidity and

market return in Acharya and Pedersen (2004). SEUSC,EW ptf,EW ptf is akin to the covariance between

EUSC return and market illiquidity. Thus, these moments are related to the risks that are potentially

priced in the liquidity CAPM of Acharya and Pedersen (2004). In a sense, we can claim to be providing

a portfolio choice rationale for their pricing formula, without resorting to exogenous illiquidity costs that

are necessary in a mean-variance framework.

Table 9 performs an operation similar in spirit to table 7, but with reference to the fourth co-moments

of equity returns.27 Once more ¡ although some discrepancies appear (as the order of moments grows

their accurate estimation becomes more troublesome) ¡ we ¯nd a striking correspondence between large

co-kurtosis coe±cients measured on the data and unconditional coe±cients implied by our regime switching

model (estimated by simulation). Generally speaking, EUSC tends to have dreadful co-kurtosis properties:

for instance KEUSC,EUSC,j,j exceeds 2.2 for all js and tends to be higher than all other similar coe±cients

involving other portfolios, which means that the volatility of EUSC is high exactly when the volatility of all

other portfolios is high. As already revealed by table 1, also the own-kurtosis of EUSC substantially exceeds

25These ¯ndings con¯rm Ang and Chen's (2002) claim that markov switching models are ¯t to capture non-normalities in

stock returns.
26Results are similar for North American and Paci¯c portfolios and are available upon request.
27Co-kurtosis coe±cients are formally de¯ned in the legend to table 9. Also in this case, we drop coe±cient estimates for

the cases in which i 6= j 6= l 6= b are available on request.
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a Gaussian reference point of 3. Table 8 con¯rms that also the model-implied KEUSC,EUSC,EW ptf,EW pft is

3.3, which is one of the highest among these types of coe±cients. KEUSC,EUSC,EW ptf,EW pft is reminiscent

of an indicator of covariance between EUSC illiquidity and market illiquidity. All in all, we have also some

evidence that the extreme tails of the marginal density of EUSC tends to be fatter than what found for

other portfolios and that their volatility might be dangerously co-moving with that of other assets. These

higher-moment properties all contribute to make small caps a much less attractive asset class than what

one might conjecture based on their sample means (medians) and their (unconditional) Sharpe ratios.

4.2.4. Welfare Costs of Ignoring European Small Caps

Gompers and Metrick (2002) observe that institutions do not usually invest in small caps, because they

prefer liquid assets. This is surprising for long-horizon investors, such as pension funds and university

endowments, that could pro¯t from their higher Sharpe ratios and diversi¯cation potential. Our evidence

concerning the high variance risk of EUSC may in principle be able explain their neglect as higher moments

of their return distribution increase skewness and kurtosis of wealth and hence of expected utility. However:

Does this mean that there is no utility loss from restricting the available asset menu to exclude small caps?

We provide a preliminary answer by considering the stark case of EUSC. We consider this exercise

extremely informative because we have found that: (i) EUSC ought to have a limited role in optimal

portfolio choices despite their seemingly promising full-sample (unconditional) Sharpe ratios; (ii) we have

discovered that EUSC display bad co-higher moment properties, which we have synthesized writing that

their variance risk is high. Thus we may have a legitimate suspicion that completely eradicating European

small caps from the problem will make a tiny damage to the welfare of our investor.

In practice, we proceed to perform compensatory variation calculations similar to those in Sections

4.1.2 and 4.2.2. In this case we identify V (Wt, rt; !̂
R
t ) with the value function under a restricted asset

menu that rules our EUSC; on the other hand, V (Wt, rt; !̂t) is the value function of the portfolio problem

solved in this Section 4.2.28 Table 10 reports a number of results. The conclusion is that ¡ in spite of their

drawbacks and their limited optimal weight ¡ the loss from constraining the choice to disregard EUSC

would be of a ¯rst-order magnitude. Even a moderate 10%, highly-regime dependent weight assigned to

an asset may substantially increase the expected utility from a portfolio choice problem. Therefore there

is no direct mapping between Gompers and Metrick's remark that small caps seem to be unimportant and

the conclusion that their market and marketability are irrelevant. In particular, end-of-sample calculations

(panel A, no short sales) show that the annualized utility loss of ignoring EUSC declines with the investment

horizons, starts at exceptionally high levels (e.g. 60% a year in the ergodic probability case) for a weekly

horizon to diminish to approximately 3 percent when T = 2 years. While for short horizon the assumed

coe±cient of relative risk aversion seems to be important, as T grows this is not the case. Panel B

documents real time results, distinguishing between three di®erent samples (the last two break down Jan.

2002 - June 2003 into two shorter, 9-month periods to have a sense for the stability of the results over

time). Interestingly, mean compensatory variations are now even higher, reaching levels in excess of 10

percent per year even at long horizons and in the worst real time sub-samples.29

28Notice that we cannot simply expect V (Wt, rt; ω̂
R
t ) · V (Wt, rt; ω̂t) as the two value functions concern problems solved

under di®erent data, statistical models, and parameter estimates. This means that the introduction of EUSC may in principle

even hurt an investor! In practice however, we anticipate this will not be the case.
29Panel B of table 10 also displays standard deviations for welfare loss estimations. In only ones case the pseudo t-statistic
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When faced with compensatory variation in excess of 3 percent per year (easily as large as 10 percent

per year) that can be considered as upper bounds for the transaction costs, it is di±cult to think that

small caps are not important for international diversi¯cation purposes. Although it is well-known that the

e®ective costs paid when transacting on small caps strongly depend on the nature of the trader (e.g. because

some of the costs are ¯xed and can be diluted by transacting relatively large blocks), on tax considerations,

and on the frequency of trading, it is unlikely that any sensible estimate of the costs implied by long-run

buy-and-hold positions (i.e. revised only every one or two years) may systematically exceed the spectrum

of welfare loss estimates we have found. So, modest and strongly regime-dependent optimal weights and

high doses of variance risk are still compatible with a claim that small caps are key to a correct and truly

expected utility enhancing international portfolio diversi¯cation.

4.3. The Role of Small Caps in an Extended Asset Menu

We anticipate at this point that at least one basic objection may be standing: Why shall we draw general

inferences on the issue of the portfolio role of small caps from the EUSC case? Even though we have

presented our reasons to start the exercise by ¯rst augmenting the asset menu using EUSC, in this Section

we proceed to further generalize the problem to also include North American small caps (NASC), besides

the North American large portfolio, i.e. a = 5. We repeat the usual process of reporting estimation and

portfolio outputs separately, even though the general logic and approach remains unchanged vs. Sections

4.1 and 4.2 and therefore many details are omitted to save space.

4.3.1. Model selection and estimates

We perform once more our model selection search using information criteria. An unreported table similar

to tables 3 and 5 shows that both the BIC and H-Q criteria keep selecting a three-state heteroskedastic

regime switching model with p = 0 (MSIH(3,0)), i.e. in which regime switching is responsible of most of

the autoregressive structure in levels noticed in table 1. Such a model implies estimation of as many as 66

parameters, although with 1,170 observations this still gives an acceptable saturation ratio of 18.30

Table 11 shows ML estimates for both the regime switching (panel B) and benchmark IID Gaussian

models (panel A). The characterization of the regimes is very similar to Section 4.2.1: the second regime is a

normal state in which both mean returns (with the exception of NASC, that give a signi¯cant mean return

of 24 percent per year) and volatilities are small (the highest annualized estimate is 17%); correlations

are all fairly high, including those involving Paci¯c stocks. The normal state is highly persistent. The

¯rst regime is a bear state in which mean returns are signi¯cantly negative and large (e.g. -4% per week

for European large caps), volatilities are high (between 25 and 50% higher than in the normal state), and

correlations moderate. The third regime is a bull state implying high and signi¯cant means, high volatilities

and modest correlations. Notice that once more all correlations involving Paci¯c stocks turn negative and

some of them are now even signi¯cantly so. The bear and bull states are non-persistent; however the

structure of the estimated transition matrix is such that the world equity markets may easily enter a high

is not signi¯cant at a standard 5 percent size. This means that our conclusion that omitting EUSC in real time implies high

utility loss does not purely depend on some isolated peaks.
30The increase in the number of parameter is essentially caused by the fact that while with a = 4 each covariance matrix

has 10 free parameters, with a = 5 such a number is 15, as 5 additional covariances must be estimated.
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volatility meta-state in which they cycle between regimes 1 and 3 with sustained °uctuations but relatively

small chances to settle down to the normal state of a®airs. A comparison of tables 11 and 5 shows that

the characterization of the states is essentially unchanged when adding NASC to the asset menu: this is

an important ¯nding that corroborates the validity of our three-state regime switching model. In fact, we

omit plots of the smoothed state probabilities that would look almost indistinguishable from those in ¯gure

6 already. The ergodic probabilities of the regimes are almost unchanged, 0.17, 0.65, and 0.18, respectively.

4.3.2. Implied portfolio weights

Although Section 4.2 has provided abundant examples of how looking at both unconditional and regime-

speci¯c Sharpe ratios may be misleading when the investor has power utility and asset returns follow

regime switching processes, we start by stressing how in this metric NASC dominate EUSC and all other

equity portfolios. Panel A of table 11 shows that NASC have a Sharpe ratio of 0.06 vs. 0.01 for EUSC

and negative ratios for all other portfolios. Figure 8 plots optimal portfolio schedules. As a re°ection of

the di®erence in Sharpe ratios, a myopic investor would invest most of her wealth (58%) in NASC, another

important proportion in EUSC (29%), and the remainder (13%) in Paci¯c stocks, essentially for hedging

reasons given the low correlations between Paci¯c and other portfolios. This means that a stunning 87%

of the overall wealth ought to be invested in small caps, North American and European.

Once more, this type of portfolio advice would be grossly incorrect, both because it ignores the existence

of predictability patterns induced by the structure of the transition matrix, and because it does not take

into account variance risk. In fact, the regime switching portfolio schedules in ¯gure 8 contain dramatic

departures from the solid, bold lines °attened by the IID myopic assumption: focussing on the case of

γ = 5 and assuming the investor ignores the current regime, her commitment to NASC would remain

large (and increasing in T ) but would be located in the 40-50% range; once more, EUSC imply large

amounts of variance risk and poor third- and fourth-order moment properties, which brings their weights

down to 15-20%. This means that there is then the opportunity to invest between 30 and 45 percent

in other portfolios, mainly the Paci¯c one. Of course, optimal allocations also turn out to be strongly

regime-dependent: for instance, the bear state 1 is highly favorable to NASC investments as these stocks

have the highest Sharpe ratio in this regime, while Paci¯c stocks provide a relatively good hedge; however

as T grows it is clear that the probability of leaving the bear state grows, so that investment schedules

revert to their ergodic counterparts. Finally, North American large caps appear with moderate weights

only in the extreme regimes 1 and 3, i.e. they should optimally be included in the portfolio only 35% of

the time, which is quite a modest assessment of their overall importance.

Table 12 performs computations of co-skewness and co-kurtosis coe±cients vs. an equally weighted

portfolio, both under the available data and under the three-state regime switching model of table 11.

In the latter case, simulations are employed to measure unconditional co-moments. We ¯nd estimates

SNASC,EW ptf,EW ptf = ¡0.29 and SNASC,NASC,EW ptf = ¡0.25 that approximately ¯t the sample mo-

ments; moreover, KNASC,NASC,EW ptf,EW ptf = 2.20, close to the sample estimate of 2.75.
31 This means

that for both small cap portfolios we have evidence that their variance increases when the variance of

31The evidence of variance risk remains strong for EUSC: the regime switching estimates are SEUSC,EW ptf,EW ptf = ¡0.31,

SEUSC,EUSC,EW ptf = ¡0.28, and KEUSC,EUSC,EW ptf,EW ptf = 3.06. Notice that these values are di®erent from those in

table 9 as they are obtained for a di®erent asset menu and statistical model.

21



the market is high, that their variance is high when the market is bear, and that their returns are below

average when the market is unstable. These properties (along with own kurtosis and skewness) explain

why our portfolio results do not completely re°ect simple Sharpe ratio-based arguments and why both

portfolios receive a much higher weight under the myopic IID calculations than in the plots in ¯gure 10.

The estimates in table 12 also make it clear that NASC imply substantially less variance risk than EUSC

¡ hence their higher weights in ¯gure 8.32

Figure 9 reports real time results (for γ = 5) con¯rming that our conclusion are far from an artifact of

the end-of-sample estimates in table 11: small caps play a substantial role in international diversi¯cation

although ¡ despite their excellent Sharpe ratio ¡ their variance risk and higher order moment properties

reduce somewhat their relevance, for instance from an average 90% myopic IID weight to less than 60%

under regime switching, when their complex statistical features are taken into account (see the sixth plot

at the bottom of the ¯gure). This wedge of roughly 30 percent in portfolio weight is a prima facie measure

of the importance of variance risk, co-skewness and co-kurtosis in international diversi¯cation.

We conclude by performing the usual two types of welfare cost calculations. While the utility loss of

ignoring predictability remains large (especially when the investor is given knowledge of the current state),

the most important result concerns the utility loss of ruling out diversi¯cation through small caps, similarly

to table 10. Speci¯cally, we identify V (Wt, rt; !̂
R
t ) with the value function under a restricted asset menu

that rules our both NASC and EUSC, while V (Wt, rt; !̂t) is the value function of the portfolio problem

entertained in this Section. Assuming γ = 5, we ¯nd that the utility loss of restricting the asset menu is

enormous (in annualized terms) over the short horizon (e.g. 39% for T = 1 week) and remains of the same

order of magnitude as in Section 4.2.4 over long horizons (e.g. 4.7% for T = 1 year and 3.7% for T = 2

years). Results are only slightly smaller when risk aversion is set to higher levels (e.g. under γ = 10 we

have 2.4% for T = 1 year and 1.5% for T = 2 years). Even a welfare loss of `only' 150 basis points (!)

on annualized, riskless basis appears enormous in the light of the utility losses normally reported in the

literature (e.g. Ang and Bekaert, 2002).

It may well be that total transaction costs associated with small caps exceed 3-4% , the annualized

welfare gain from including small caps into the portfolio of a 2-years investor. While the e®ective spread

on the four most illiquid NYSE and AMEX stock deciles ranges from 0.98 to 4.16 percent (see Chalmers

and Kadlec, 1998), transaction costs associated with EUSC could be higher for two reasons. First, some

EU markets are less liquid than NYSE.check fn33 Second, total transaction costs include not only bid-ask

costs but commissions as well. For instance, Lesmond (2004) estimates total round-trip costs to be equal,

on average, to 8.5% in the Hungarian market. Hence, a 6% welfare gain over 2 years may be exceeded,

especially if small caps in our sample came mostly from New Europe. However, a moderately risk averse

investor with horizons shorter than 1 year, hence annualized welfare gains larger than 11.5%, should still

have an incentive to invest in small caps in the light of the above estimates. We are left with the suspicion

32Figure 8 also stresses that in this exercise the coe±cient of relative risk aversion has ¯rst-order e®ects. Mainly, we observe

a shift of weights from NASC to EUSC, although the overall e®ect is to make small caps less important (e.g. from 65 to 60%

in steady state and for T = 2 years). As shown by Guidolin and Timmermann (2005b), as γ increases, progressively more

weight is given to higher order moments when making optimal portfolio choices. In this sense, our remarks on the e®ects of

variance risk may then represent a lower bound as principally based on the case γ = 5.
33Swan and Westerholm (2003) estimate the mean and standard deviation of e®ective spreads to be respectively equal to

1.28% and 1.95% on the NYSE, 0.3 and 0.7 on the London Stock Exchange, and 0.6 and 0.2 on the Milan Stock Exchange.

In a global European de¯nition, the latter market clearly lists many small capitalization ¯rms.
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that ¡ even after taking transaction costs into account ¡ the availability of small caps may signi¯cantly

increases expected utility through better risk diversi¯cation opportunities.

5. Robustness Checks

5.1. Dynamic Rebalancing

Section 4 has focussed entirely on the buy-and-hold case, ϕ = T . However ¡ especially given that we have

at times entertained long investment horizons up to 2 years ¡ buy-and-hold is inconsistent with the very

idea that international equity returns are predictable, in the sense that a rational investor should change

the structure of her portfolio as new information is acquired and beliefs on current and future regimes are

recursively revised. This means that dynamic portfolio strategies with ϕ < T are much more plausible

than buy-and-hold ones. We therefore repeat calculations of portfolio weights from Section 4.2 (a = 4,

including EUSC) for γ = 5 and a few alternative assumptions on the rebalancing frequency, ϕ = 1, 4, 16,

26 (biannual rebalancing), and 52 (i.e. annual rebalancing). In the light of the average durations of regimes

1 and 3 (less than 2 weeks), the cases ϕ = 1 and 4 do seem the most plausible ones, although transaction

costs and other frictions (unmodeled here) may suggest in practice using higher values of ϕ.

Table 13 reports optimal weights.34 As previously observed by Guidolin and Timmermann (2004a,

2005b), rebalancing hardly changes the main implications found under simpler, buy-and-hold strategies,

although it makes portfolio weights much more reactive to the initial state, and much less sensitive to the

investment horizon. This is also the case in our set up: dynamic strategies imply positive and high weights

on EUSC only when the investor knows the state is the normal one. In this case the optimal weight is

actually extreme, 100%. This makes sense as EUSC have excellent Sharpe ratio in regime 2. Since EUSC's

Sharpe ratio is also fairly good in the bull state, a positive demand exists also in this case, even though

the proportions are small and limited to very high rebalancing frequencies. The demand for EUSC in the

steady-state case is instead rather limited, zero for short horizons up to 20% for T = 2 years. Clearly,

rebalancing possibilities fail to overturn our previous ¯nding that ¡ because of their high variance risk and

poor skewness and kurtosis properties ¡ small caps may in practice result much less attractive than what

their high Sharpe ratios may lead us to conjecture (as re°ected by their 87% IID myopic weight).

5.2. Long Horizons

Another sensible objection is that the type of institutional investor studied by Gompers and Metrick (2001)

may in fact have horizons much longer than the 2 years ceiling we have used. Although some caution should

be used when extending the horizon (prediction interval) beyond the length of the data set (Jan. 1999 - June

2003, four and half years) we have used, ¯gure 10 shows optimal portfolio schedules for the case γ = 5 and

when the investment horizon is extended up to T = 5 years. For simplicity, we report results for buy-and-

hold portfolio directly comparable to Section 4.2.2, i.e. a = 4 and the asset menu includes EUSC. Figure

10 reports a very intuitive phenomenon already notice by Guidolin and Timmermann (2004a) in other

applications: even though short- to medium-term horizon weights may strongly depend on the regime, as

T grows all optimal investment schedules tend to converge towards their steady-state counterparts. This

makes sense, as the best long-run forecast an agent may form about the future state is simply that all

34Results are also available for the restricted asset menu case a = 3 but are not reported to save space.
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regimes are possible with probabilities identical to their ergodic frequencies. More importantly for our

application, ¯gure 10 shows evidence that even for very long horizons compatible with the objectives of

large-size institutional investors, the optimal weight assigned to EUSC appears rather limited as a result

of their high variance risk. Furthermore, even assuming a strong initial belief in the normal regime 2, for

T = 5 years we have that the EUSC weight will be at most 55%, since over long periods markets are bound

to transition out of the normal state and spend a fair share of time in both bull and bear states where

North American large stocks dominate.

5.3. Short Sales

Although selling short equity indices appears to be more problematic than shorting individual stocks, the

optimal asset allocation literature has developed a tradition of also computing and reporting unconstrained

weights, in the sense that both negative positions and positions exceeding 100% of the initial wealth be

allowed. We therefore perform afresh portfolio calculations for the case in which weights are allowed to

vary between -400 and +400%.35 Once more, we limit the experiments to the cases of a = 4.

Figure 11 shows a sample of the resulting optimal weights. Removing the no-short sale constraint

hardly changes our conclusion concerning the desirability of EUSC in international diversi¯cation: while

a myopic investor who operates under a (false) IID framework would in fact invest in excess of 130% of

her initial wealth in EUSC to exploit their high Sharpe ratio (and would ¯nance this choice by essentially

shorting European large stocks), in a regime switching framework the demand for EUSC depends on the

initial state. It is still very high under the second, normal regime (in excess of 250%!), but in the most

plausible case of unknown regime, the weight is only 20%, not very di®erent from the results of Section

4.2.2. Risk aversion increases this proportion to almost 40%, but it remains true that the highest regime

switching weights still keep involving all other assets as well with the exception of European large caps.36

Table 10 contains compensatory variation estimates that extend to the case of short sales. In particular

the ergodic panel of the table highlights that admitting short sales enhances our estimate of the welfare

gains from using small caps in international portfolio diversi¯cation, as most estimates (for both γ = 5

and 10) do increase when short sales are admitted. The worst-case estimate remains a long-run annualized

riskless 3 percent, obtained assuming γ = 10. Therefore also in this experiment, small caps command only

moderate portfolio weight but also imply rather large welfare improvements.

6. Concluding Comments

It is well known from the literature that recurrent regime shifts are often required to correctly model the

multivariate density of asset returns. In this paper we have found further evidence that such a statistical

characterization can also be very helpful when modeling international equity returns. Since multivariate

35As discussed by Barberis (2000) and Kandel and Stambaugh (1996) allowing short-sales creates problems when returns

come from an unbounded density, in the sense that bankruptcy becomes possible and expected utility is not de¯ned for non

positive terminal wealth. As stressed in Guidolin and Timmermann (2004a), when Monte Carlo methods are used, this forces

the researcher to truncate the distribution from which returns are simulated to avoid instances of bankruptcy. This means

that returns are not simulated from the econometric models estimated in Section 4, but from a suitably truncated distribution

in which the probability mass is redistributed to sum to one. We accomplish the truncation by applying rejection methods.
36Since di®erences between IID and regime switching weights widen when short sales are admitted, we generally ¯nd that

in this case the welfare costs of ignoring regimes are much higher than what reported in Sections 4.1.2 and 4.2.2.
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regime switching models imply that equity returns may display rich and interesting higher co-moment

properties (co-skewness and co-kurtosis), in this paper we have asked whether such properties ¡ that we

have collectively labeled variance risk ¡ may o®er an explanation for a puzzling empirical fact: otherwise

sophisticated institutional investors that are likely to possess long investment horizons seem to avoid

investing in small capitalization stocks (e.g. Gompers and Metrick, 2002). As these stocks generally o®er

interesting mean returns and high Sharpe ratios, this observations has recently spurred many interesting

attempts of explanation.

In fact we have found in this paper an excellent example of a class of small caps stocks, European small

caps, which display an average premium over large caps which is not purely justi¯ed by their variance and

which fail to enter in massive proportions the optimal portfolio of a rational investor who: (i) has power

utility, and (ii) takes into account the existence of predictability of the regimes characterizing the joint

distribution of the available data. A powerful display of the existence of variance risk in EUSC is our result

that, while their optimal weight in a myopic portfolio ought to be close to 90%, their optimal weight under

regime switching and when the state is unobservable is always less than 20%. However, such a ¯nding does

not make small caps irrelevant for portfolio diversi¯cation: for instance our estimates of the welfare loss

associated with dropping them from the asset menu were often in excess of 5% in a riskless, annualized

metric. Even if our paper has ignored transaction costs and other frictions, it is di±cult to think that ¡

even when trading on rather illiquid small caps ¡ a large-scale institutional investor might face costs of

trading exceeding 500 basis points or more.

These results stand when the asset menu is extended to include a North American small capitalization

portfolio, in the sense the in spite of the exceptional average premia and Sharpe ratio that NASC have

yielded, we ¯nd that under realistic assumptions the combined weights of European and North American

small caps fails to exceed 50% and remains at least 30 percent below what we would have obtained assuming

a simple IID framework that ignores variance risk and higher-moment properties.

There are several natural extensions and/or completions of our paper. First, our result support an

emerging view in the asset pricing literature that the so-called size premium (see Fama and French, 1993)

may be not an anomaly but instead just a rational premium associated with the illiquidity and the high

variance risk of small caps. As a matter of fact, we have found that the demand for small caps might be

severely limited by their variance risk, thus explaining low equilibrium prices and high returns. However,

it is clear that our model with regime shifts and power utility preferences is not yet an equilibrium model,

while extensions in this direction would be interesting. Acharya and Pedersen (2004) is a ¯rst example

in this direction, although only in a mean-variance set up. Second, we have computed estimates of the

welfare losses caused by imposing restrictions on the asset menu and concluded that although their optimal

proportions are much less than exceptional, small capitalization stocks may still be extremely helpful in

international diversi¯cation programs. Needless to say, small caps are known to be traded on illiquid and

expensive markets. It would be interesting to explicitly introduce transaction costs in our asset allocation

exercise and explicitly check the robustness of our results. Balduzzi and Lynch (1999) and Lynch and

Balduzzi (2000) show how this could be accomplished in discrete time frameworks akin to ours.

Finally, our results from Section 4.3 have rich implications for the general issue of the limits and

bene¯ts of international equity portfolio diversi¯cation. For instance, since Tesar and Werner (1995) it has

been observed that investor in many countries and particularly in the US tend to grossly under-diversify
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their equity portfolios. Our paper has shown that regime shifts (especially as they a®ect the covariance

matrices of returns) deeply a®ect the composition of optimal stock portfolios. North American large caps

are observed to be the least volatile asset in bear markets. Following Vayanos (2004), they can easily be

construed as the quality asset the investors should °ight to in market downturns. Indeed, their portfolio

share grows from zero in the normal state to 30% in bear markets. However, °ight to quality is not complete

in our setting. Other equity portfolios remain in high demand: Paci¯c stocks allow to dampen portfolio

volatility changes since they have low correlation with both North American large stocks in bear states and

with both NASC and EUSC in bull states. Thus, the desire to hedge both potential losses and potential

increases in portfolio variance preserves the diversi¯cation of international portfolios, contrary to results

in Ang and Bekaert (2002) where the optimal portfolio may be entirely composed of US stocks.

References

[1] Acharya V., and L., Pedersen, 2004, \Asset Pricing with Liquidity Risk", Journal of Financial Eco-

nomics, forthcoming.

[2] Ang A., and G., Bekaert, 2001, International Asset Allocation with Regime Shifts, Review of Financial

Studies, 15, 1137-1187.

[3] Ang A. and J., Chen, 2002, \Asymmetric Correlations of Equity Portfolios", Journal of Financial

Economics, 63, 443-494.

[4] Ang, A., R., Hodrick, Y., Xing, and X., Zhang, 2004, \The Cross-Section of Volatility and Expected

Returns", mimeo, University of Southern California and Columbia Business School.

[5] Annaert, J., J., Crombez, B., Spinel, and F., Van Holle, 2002, \Value and Size E®ects: Now You See

It, Now You Don't", Working Paper 146, Ghent University.

[6] Amihud Y., and H., Mendelson, 1986, \Asset Pricing and the Bid-Ask Spread", Journal of Financial

Economics, 17, 223-249.

[7] Balduzzi, P., and A., Lynch, 1999, Transaction Costs and Predictability: Some Utility Cost Calcula-

tions, Journal of Financial Economics, 52, 47-78.

[8] Banz, R., 1981, \The Relationship Between Returns and Market Value of Common Stocks", Journal

of Financial Economics, 9, 3-18.

[9] Barberis, N., 2000, \Investing for the Long Run When Returns Are Predictable", Journal of Finance,

55, 225-264.

[10] Brennan, M., and Y., Xia, 2001, Assessing Asset Pricing Anomalies, Review of Financial Studies, 14,

905{942.

[11] Brennan, M., and A. Subrahmanyam, 1996, Market Micristructure and Asset Pricing: On the Com-

pensation for Illiquidity in Stock Returns, Journal of Financial Economics, 41, 441-464

[12] Butler K., and D., Joaquin, 2002, \Are the Gains from International Equity Portfolio Diversi¯cation

Exaggerated? The In°uence of Downside Risk in Bear Markets", Journal of International Money and

Finance, 21, 981-1011.

[13] Campbell, J., 1987, \Stock Returns and the Term Structure", Journal of Financial Economics, 18,

373-399.

26



[14] Campbell, J., Chan, and L., Viceira, 2003, A Multivariate Model of Strategic Asset Allocation, Journal

of Financial Economics, 67, 41-80.

[15] Campbell, J., and L., Viceira, 1999, Consumption and Portfolio Decisions when Expected Returns

Are Time Varying, Quarterly Journal of Economics, 114, 433-495.

[16] Canner, N., G., Mankiw, and D., Weil, 1997, \An Asset Allocation Puzzle", American Economic

Review, 87, 181-191.

[17] Das, S., and R., Uppal, 2004, Systemic Risk and International Portfolio Choice, Journal of Finance,

forthcoming.

[18] Davies, R., 1977, \Hypothesis Testing When a Nuisance Parameter Is Present Only Under the Alter-

native", Biometrika, 64, 247-254.

[19] Elton E., M., Gruber, S., Brown, and W., Gotzmann, 2003, Modern Portfolio Theory and Investment

Analysis, John Wiley & Sons.

[20] European Central Bank, 2001, The Euro Equity Markets.

[21] Fama, E., and K. French, 1993, \Common Risk Factors in the Returns of Stocks and Bonds", Journal

of Financial Economics, 33, 3-56.

[22] Fama, E., and K. French, 1998, \Value versus Growth: The International Evidence", Journal of

Finance, 53, 1975-1999.

[23] Galati G., and K., Tsatsaronis, 2001, \The Impact of the Euro on Europe's Financial Markets", Bank

of International Settlements, working paper No. 100.

[24] Gompers P., and A., Metrick, 2002, \Institutional Investors and Equity Prices", Quarterly Journal of

Economics, 116, 229-260.

[25] Guidolin, M. and A., Timmermann, 2004a, \Size and Value Anomalies under Regime Switching",

mimeo, Federal Reserve Bank of St. Louis Working Paper 2005-007A.

[26] Guidolin, M. and A., Timmermann, 2004b, \Strategic Asset Allocation and Consumption Decisions

under Multivariate Regime Switching", mimeo, Federal Reserve Bank of St. Louis Working Paper

2005-002A.

[27] Guidolin, M. and A., Timmermann, 2005a, \An Econometric Model of Nonlinear Dynamics in the

Joint Distribution of Stock and Bond Returns", Journal of Applied Econometrics, forthcoming.

[28] Guidolin, M. and A., Timmermann, 2005b, \International Asset Allocation under Regime Switching,

Skew and Kurtosis Preferences", mimeo, Federal Reserve Bank of St. Louis Working Paper 2005-018A.

[29] Hamilton, J., 1989, A New Approach to the Economic Analysis of Nonstationary Time Series and the

Business Cycle, Econometrica, 57, 357-384.

[30] Hamilton, J., 1994, Time Series Analysis. Princeton University Press.

[31] Harvey, C., and A., Siddique, 2000, \Conditional Skewness in Asset Pricing Tests", Journal of Finance,

55, 1263-1295.

[32] Ingersoll, J., 1987, Theory of Financial Decision Making. Rowland and Little¯eld.

27



[33] Jondeau, E., and M., Rockinger, 2003, \Optimal Portfolio Allocation Under Higher Moments", mimeo,

HEC Lausanne.

[34] Kandel, S., and R., Stambaugh, 1996, On the Predictability of Stock Returns: An Asset Allocation

Perspective, Journal of Finance, 51, 385-424.

[35] Keim, D., 1983, \Size-Related Anomalies and Stock Return Seasonality: Further Empirical Evidence",

Journal of Financial Economics, 12, 13-32.

[36] Keim, D., and R., Stambaugh, 1986, Predicting Returns in the Stock and Bond Markets, Journal of

Financial Economics, 17, 357-390.

[37] Kim, T.,S., and E., Omberg, 1996, \Dynamic Nonmyopic Portfolio Behavior", Review of Financial

Studies, 9, 141-161.

[38] Lo, A.W, Mamaysky H., and J., Wang, 2004, "Asset Pricing and Trading Volume under Fixed Trans-

action Costs", Journal of Political Economy, 112,5, 1054-1090.

[39] Longin, F., and B., Solnik, 1995, \Is the Correlation in International Equity Returns Constant:1960-

1990?", Journal of International Money and Finance, 14, 3-26.

[40] Longin, F., and B., Solnik, 2001, \Correlation Structure of International Equity Markets During

Extremely Volatile Periods", Journal of Finance, 56, 649-676.

[41] Lynch, A., 2001, \Portfolio Choice and Equity Characteristics: Characterizing the Hedging Demands

Induced by Return Predictability", Journal of Financial Economics, 62, 67-130.

[42] Lynch, A., and P., Balduzzi, 2000, Transaction Costs and Predictability: The Impact on Portfolio

Choice, Journal of Finance, 55, 2285-2310.

[43] Keim, D., and R., Stambaugh, 1986, \Predicting Returns in Stock and Bond Markets", Journal of

Financial Economics, 17, 357-390.

[44] Marron, J., and M., Wand, 1992, Exact Mean Integrated Squared Error, Annals of Statistics, 20,

712-736.

[45] Merton, R., 1969, \Lifetime Portfolio Selection: the Continuous-Time Case", Review of Economics

and Statistics, 51, 247-257.

[46] Pastor, L., 2000, \Portfolio Selection and Asset Pricing Models", Journal of Finance, 55, 179-224.

[47] Pastor L., and R., Stambaugh, 2003, \Liquidity Risk and Expected Stock Returns", Journal of Political

Economy, 111, 643-684

[48] Peres-Quiros G., and A., Timmermann, 2000, \Firm Size and Cyclical Variations in Stock Returns",

Journal of Finance, 55, 1229-1262.

[49] Pesaran H., and A., Timmermann, 1995, \Predictability of Stock Returns: Robustness and Economic

Signi¯cance", Journal of Finance, 50,1201-1228.

[50] Ramchand, L., and R., Susmel, 1998, \Volatility and Cross Correlation Across Major Stock Markets",

Journal of Empirical Finance, 5, 397-416.

[51] Reinganum, M., 1981, \Misspeci¯cation of Capital Asset Pricing: Empirical Anomalies Based on

Earnings Yields and Market Values", Journal of Financial Economics, 9, 19-46.

28



[52] Samuelson, P., 1969, Lifetime Portfolio Selection by Dynamic Stochastic Programming, Review of

Economics and Statistics, 51, 239-246.

[53] Tesar, L. and Werner, I., 1995, \Home Bias and High Turnover", Journal of International Money and

Finance, 14, 467-492.

[54] Timmermann, A., 2000, Moments of Markov Switching Models, Journal of Econometrics, 96, 75-111.

[55] Turner, C., R., Startz, and C., Nelson, 1989, AMarkov Model of Heteroskedasticity, Risk, and Learning

in the Stock Market, Journal of Financial Economics, 25, 3-22.

[56] Vayanos, D., 2004, \Flight to Quality, Flight to Liquidity and the Pricing of Risk", mimeo, Sloan

School of Management, M.I.T..

[57] Vayanos, D., 1998, "Transaction Costs and Asset Prices: A Dynamic Equilibrium Model", Review of

Financial Studies, 11, 1, 1-58.

[58] Wachter, J., 2002, \Portfolio and Consumption Decisions Under Mean-Reverting Returns: An Exact

Solution for Complete Markets", Journal of Financial and Quantitative Analysis, 37, 63-91.

[59] Whitelaw, R., 2001, \Stock Market Risk and Return: An Equilibrium Approach", Review of Financial

Studies, 13, 521-548.

Appendix - Backward Solution of the Asset Allocation Problem under Regime Switching

Suppose the optimization problem has been solved backwards at the rebalancing points tB¡1, ..., tb+1 so

that Q(¼jb+1, tb+1) is known for all values j = 1, 2, ..., G on the discretization grid. For each ¼b = ¼
j
b, it is

then possible to ¯nd Q(¼jb, tb) at time tb. For concreteness, consider the case of p = 0, i.e. the conditional

mean function does not imply any autoregressive structure. Approximating the expectation in the objective

function

Etb

h©
!0b exp

¡
R
p
b+1

¢ª1¡γ
Q(¼jb+1, tb+1)

i

by Monte Carlo methods requires drawing N samples of asset returns fRb+1,n(¼
j
b)g

N
n=1 from the (b+1)ϕ-

step-ahead joint density of asset returns conditional on period-t parameter estimates, bµt = (f¹̂t,i, b§t,igki=1,
P̂t) assuming that ¼

j
b is optimally updated to ¼b+1(¼

j
b). The algorithm consists of the following steps:

1. For a given ¼jb and for each possible future regime sb+1 = j calculate the (b + 1)ϕ-step ahead

probability of being in each of the four regimes as ¼b+1jb = (¼
j
b)
0P̂
ϕ
t , using that P̂

ϕ
t ´

Qϕ
j=1 P̂t is the

ϕ-step ahead transition matrix.

2. For each possible future regime, sb, simulate N ϕ¡period returns fRb+1,s(sb)g
N
n=1 in calendar time

from the regime switching model

rtb+i,n(sb) = ¹̂stb+i
+ "tb+i,n,

where Rb+1,n(sb) ´
Pϕ
i=1 rtb+i,n(sb) and "tb+i,n » N(0,

b§stb+i). At all rebalancing points this simu-
lation allows for stochastic regime switching as governed by the transition matrix P̂t. For example,

if we start in regime 1, between tb + 1 and tb + 2 there is a probability p̂12 ´ e
0
1P̂te2 of switching to

regime 2, and a probability p̂11 ´ e
0
1P̂te1 of staying in regime 1.
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3. Combine the simulated ϕ¡period asset returns fRb+1,ng
N
n=1 into a random sample of size N, using

the probability weights contained in the vector ¼jb:

Rb+1,n(¼
j
b) =

4X

i=1

(¼jb)
0eiRb+1,n(sb = i).

4. Update the future regime probabilities perceived by the investor using the formula

¼b+1,n(¼
j
b) =

³
¼0b(µ̂b)P̂

ϕ
b

´0
¯ ´(rb+1; µ̂b)

[(¼0b(µ̂b)P̂
ϕ
b )
0 ¯ ´(rb+1; µ̂b))]0¶k

obtaining an N£4 matrix f¼b+1,n(¼
j
b)g

N
n=1, each row of which corresponds to a simulated row vector

of perceived regime probabilities at time tb+1.

5. For all n = 1, 2, ...,N, calculate the value ~¼jb+1,n on the discretization grid (j = 1, 2, ..., G) that is

closest to ¼b+1,n(¼
j
b) according to the metric

P3
i=1 j(¼

j
b+1)

0ei ¡ ¼
0
b+1,neij, i.e.

~¼
j
b+1,n(¼

j
b) ´ argmin

x2πj
b+1

3X

i=1

jx0ei ¡ ¼
0
b+1,neij.

Knowledge of the vector f~¼jb+1,n(¼
j
b)g

N
n=1 allows us to build fQ(¼

(j,n)
b+1 , tb+1)g

N
n=1, where ¼

(j,n)
b+1 ´

~¼
j
b+1,n(¼

j
b) is a function of the assumed vector of regime probabilities ¼

j
b.

6. Solve the program

max
ωb(π

j
b
)
N¡1

NX

n=1

·n
!0b exp

³
Rb+1,n(¼

j
b)
´o1¡γ

Q(¼
(j,n)
b+1 , tb+1)

¸
,

which for large values of N provides an arbitrarily precise Monte-Carlo approximation of the expec-

tation E

·n
!0b exp

³
Rb+1,n(¼

j
b)
´o1¡γ

Q(¼jb+1, tb+1)

¸
. The optimal value function corresponding to

the optimal portfolio weights !̂b(¼
j
b) de¯nes Q(¼

j
b, tb) for the jth point on the initial grid.

The algorithm is applied to all possible values ¼jb on the discretization grid until all values of Q(¼
j
b, tb)

are obtained for j = 1, 2, ..., G. It is then iterated backwards until tb+1 = t + ϕ. At that stage the

algorithm is applied one last time, taking Q(¼jt+ϕ, t + ϕ) as given and using one row vector of perceived

regime probabilities ¼t, the vector of smoothed probabilities estimated at time t. The resulting vector

of optimal portfolio weights !̂t is the desired optimal portfolio allocation at time t, while Q(¼t, t) is the

optimal value function.
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Table 1 

Summary Statistics for International Stock Returns 

The table reports basic moments for weekly equity total return series (including dividends, adjusted for stock splits, etc.) 
for a few international portfolios. The sample period is January 1999 – June 2003. All returns are expressed in local 

currencies. Means, medians, and standard deviations are annualized by multiplying weekly moments by 52 and 52 , 

respectively. LB(j) denotes the j-th order Ljung-Box statistic. 

 

Portfolio Mean Median St. Dev. Skewness Kurtosis LB(4) 
LB(4)- 
squares 

Europe – Large Caps -0.079 -0.081 0.267 0.186 4.975 20.031** 32.329**

Europe – Small Caps 0.012 0.144 0.161 -0.778 4.815 16.202** 29.975**

North America – Large Caps -0.012 -0.114 0.206 0.277 3.673 6.981 12.396*

North America – Small Caps 0.101 0.128 0.218 -0.181 3.384 15.849** 11.374*

Pacific -0.035 0.006 0.187 -0.086 3.395 3.138 2.667 

 * denotes 5% significance, ** significance at 1%. 

 

 

 

 

 

Table 2 

Correlation Matrix of International Stock Returns 

The table reports linear correlation coefficients for weekly equity total return series (including dividends, adjusted for 
stock splits, etc.) for a few international portfolios. The sample period is January 1999 – June 2003. All returns are 
expressed in local currencies.  

 

 EU – Large EU – Small 
North 

America 
North Am. – 

Large 
North Am. – 

Small 
Pacific 

EU – Large Caps 1 0.782 0.747 0.754 0.695 0.509 

EU – Small Caps  1 0.668 0.672 0.727 0.540 

North America   1 0.997 0.795 0.484 

North Am. – Large Caps    1 0.795 0.484 

North Am. – Small Caps     1 0.427 

Pacific      1 

 



Table 3 

Model Selection for Returns on European Large Caps, North American Large Caps, and  

Pacific Equity Portfolios 

The table reports estimates for the multivariate Markov switching conditionally heteroskedastic VAR model: 

t

p

j 1

jtjsst tt
A εrµr ∑

=
− ++=  

where  is the intercept vector in state s
tsµ t,  is the matrix of autoregressive coefficients associated with lag j ≥ 1 in 

state s

tjsA

t and ),( ~]'  [ 321 tstttt N Σ= 0ε εεε . The unobserved state variable st is governed by a first-order Markov chain 

that can assume k distinct values. p autoregressive terms are considered. The sample period is January 1999 – June 2003. 
MSIAH(k,p) stands for Markov Switching Intercept Autoregressive Heteroskedasticity model with k states and p 
autoregressive lags. 
 

Model 
(k,p) 

Number of 
parameters 

Log-
likelihood 

LR test for 
linearity 

BIC 
Hannan-

Quinn 

 Base model: MSIA(1,0)
MSIA(1,0) 9 1597.00 NA -13.4398 -13.5191 

MSIA(1,1) 18 1607.08 NA -13.3736 -13.5327 

MSIA(1,2) 27 1610.42 NA -13.2490 -13.4884 

 Base model: MSIA(2,0)

MSIA(2,0) 14 1599.35 
4.6972 
(0.971) 

-13.3433 -13.4666 

MSIH(2,0) 20 1639.69 
85.3730 
(0.000) 

-13.5482 -13.7244 

MSIA(2,1) 32 1639.42 
64.6713 
(0.000) 

-13.3236 -13.6064 

MSIAH(2,1) 38 1642.85 
71.5345 
(0.000) 

-13.2127 -13.5486 

MSIA(2,2) 50 1663.94 
107.0428 
(0.000) 

-13.1705 -13.6137 

 Base model: MSIA(3,0)

MSIA(3,0) 21 1628.50 
63.0003 
(0.000) 

-13.4292 -13.6143 

MSIH(3,0) 33 1656.26 
118.5173 
(0.000) 

-13.3867 -13.6775 

MSIA(3,1) 48 1659.77 
105.3812 
(0.000) 

-13.1240 -13.5483 

MSIAH(3,1) 60 1681.08 
147.9954 
(0.000) 

-13.0261 -13.5565 

 Base model: MSIA(4,0)

MSIA(4,0) 30 1633.58 
73.1593 
(0.000) 

-13.2628 -13.5272 

MSIA(4,1) 66 1684.87 
155.5868 
(0.000) 

-12.9184 -13.5017 

MSIH(4,0) 48 1667.89 
141.7696 
(0.000) 

-13.1364 -13.5594 

MSIAH(4,1) 84 1703.65 
193.1344 
(0.000) 

-12.6584 -13.4009 



Table 4 

Estimates of a Two-State Regime Switching Model for Large European, North American 

Large Caps, and Pacific Equity Portfolios 

The table shows estimation results for the regime switching model: 

tst εµr
t
+=  

where rt is a 3×1 vector collecting weekly total return series,  is the intercept vector in state s
tsµ t,, and 

),( ~]'  [ 321 tstttt N Σ= 0ε εεε . The sample period is January 1999 – June 2003. The unobservable state st is governed 

by a first-order Markov chain that can assume two values. The first panel refers to the single-state case k = 1. Asterisks 
attached to correlation coefficients refer to covariance estimates. For mean coefficients and transition probabilities, 
standard errors are reported in parenthesis. 

 

 Panel A – Single State Model 

 Europe – Large caps North America Large Pacific 
1. Mean excess return -0.0015 -0.0008 -0.0007 
2. Correlations/Volatilities    
Europe – Large caps 0.0370***   

North America - Large caps 0.7470*** 0.0285***  

Pacific 0.5086*** 0.4843*** 0.0259***

 Panel B – Two State Model 

 Europe – Large caps North America Large Pacific 
1. Mean excess return    
Normal State -0.0002 -0.0003 0.0010 
Bear State -0.0046 -0.0020 -0.0048 

2. Correlations/Volatilities    
Normal state:    
Europe – Large caps 0.0253***   

North America - Large caps 0.7318*** 0.0231***  

Pacific 0.5845*** 0.6077*** 0.0227***

Bear state:    
Europe – Large caps 0.0559***   

North America - Large caps 0.7681*** 0.0387***  

Pacific 0.4675** 0.3607* 0.0321***

3. Transition probabilities Normal State Bear State 
Normal State 0.9605*** 0.0395 
Bear State 0.1084** 0.8916 

* denotes 10% significance, ** significance at 5%, *** significance at 1%. 



Table 5 

Selection of Regime Switching Model for Returns on European, North American,  

and Pacific Equity Portfolios – Effects of Adding European Small Caps 

The table reports estimates for the multivariate Markov switching conditionally heteroskedastic VAR model: 

t

p

j 1

jtjsst tt
A εrµr ∑

=
− ++=  

where  is the intercept vector in state s
tsµ t,  is the matrix of autoregressive coefficients associated with lag j ≥ 1 in 

state s

tjsA

t and . The unobserved state variable s),0(N ~]'  [ε
tst4t3t2t1t Ωεεεε= t is governed by a first-order Markov 

chain that can assume k distinct values. p autoregressive terms are considered. The sample period is January 1999 – June 
2003. MSIAH(k,p) stands for Markov Switching Intercept Autoregressive Heteroskedasticity model with k states and p 
autoregressive lags. 
 

Model 
(k,p) 

Number of 
parameters 

Log-
likelihood 

LR test for 
linearity 

BIC 
Hannan-

Quinn 

Base model: MSIA(1,0) 
MSIA(1,0) 14 2277.84 NA -19.1423 -19.2657 

MSIA(1,1) 30 2321.25 NA -19.2230 -19.4882 

MSIA(1,2) 46 2325.78 NA -18.9699 -19.3777 

Base model: MSIA(2,0) 

MSIA(2,0) 20 2293.17 
30.6600 
(0.000) 

-19.1335 -19.3097 

MSIH(2,0) 30 2309.30 
62.9205 
(0.000) 

-19.0382 -19.3026 

MSIA(2,1) 52 2377.18 
111.8710 
(0.000) 

-19.1885 -19.6281 

MSIAH(2,1) 62 2377.86 
99.2137 
(0.000) 

-18.9002 -19.4482 

MSIA(2,2) 84 2379.88 
94.2066 
(0.000) 

-18.4838 -19.2285 

Base model: MSIA(3,0) 

MSIA(3,0) 28 2328.06 
100.4450 
(0.000) 

-19.2452 -19.4919 

MSIH(3,0) 48 2373.25 
190.8288 
(0.000) 

-19.2252 -19.5882 

MSIA(3,1) 76 2384.26 
126.0169 
(0.000) 

-18.6877 -19.3594 

MSIAH(3,1) 96 2432.60 
222.6945 
(0.000) 

-18.6347 -19.4832 

Base model: MSIA(4,0) 

MSIA(4,0) 38 2330.84 
106.0120 
(0.000) 

-19.0358 -19.3707 

MSIA(4,1) 102 2429.12 
215.7464 
(0.000) 

-18.4645 -19.3661 

MSIH(4,0) 68 2393.42 
231.1690 
(0.000) 

-18.8713 -19.4706 



Table 6 

Estimates of a Three-State Regime Switching Model for European, North American,  

and Pacific Equity Portfolios – Effects of Adding European Small Caps 

The table shows estimation results for the regime switching model: 

tst t
r εµ +=  

where rt is a 4×1 vector collecting weekly total return series,  is the intercept vector in state s
tsµ t, and 

),( ~]'  [ 4321 tsttttt N Σ= 0ε εεεε . The unobservable state st is governed by a first-order Markov chain that can assume 

three values. The first panel refers to the single-state case k = 1. Asterisks attached to correlation coefficients refer to 
covariance estimates. For mean coefficients and transition probabilities, standard errors are reported in parenthesis. 
 

 Panel A – Single State Model 

 Europe – Large caps North America Large Pacific Europe – Small caps

1. Mean excess return -0.0015 -0.0008 -0.0007 0.0002 
2. Correlations/Volatilities     
Europe – Large caps 0.0370***    
North America - Large caps 0.7470*** 0.0285***   
Pacific 0.5086*** 0.4843*** 0.0259***  
Europe – Small caps 0.7816*** 0.6680*** 0.5403*** 0.0222***

 Panel B – Three State Model 

 Europe – Large caps North America Large Pacific Europe – Small caps

1. Mean excess return     
Bear State -0.0501*** -0.0268*** -0.0256*** -0.0288***

Normal State -0.0005 -0.0006 0.0007 0.0032**

Bull State 0.0374*** 0.0214*** 0.0157*** 0.0136***

2. Correlations/Volatilities     
Bear state:     
Europe – Large caps 0.0300***    
North America - Large caps 0.6181*** 0.0247***   
Pacific 0.1000 0.0544 0.0277***  
Europe – Small caps 0.7028*** 0.5843*** 0.5045** 0.0290***

Normal state:     
Europe – Large caps 0.0246***    
North America - Large caps 0.7182*** 0.0226***   
Pacific 0.5694*** 0.6022*** 0.0219***  
Europe – Small caps 0.7062*** 0.6369*** 0.5759*** 0.0153***

Bull state:     
Europe – Large caps 0.0370***    
North America - Large caps 0.5739*** 0.0343***   
Pacific -0.1242 -0.0515 0.0241***  
Europe – Small caps 0.7114*** 0.5137*** -0.3581** 0.0177***

3. Transition probabilities Bear State Normal State Bull State 
Bear State 0.2190* 0.0012 0.7798 

Normal State 0.0349 0.9650*** 0.0001 

Bull State 0.5416*** 0.1698** 0.2886 

* denotes 10% significance, ** significance at 5%, *** significance at 1%. 



Table 7 

Sample and Implied Co-Skewness Coefficients 
The table reports the sample co-skewness coefficients, 
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(i, j, l = Europe large, North America large, Pacific, Europe small) and compares them with the co-skewness 
coefficients implied by a three-state regime switching model: 

=tr
tt ss Σ+µ εt .

εt )I,( ~ 40I.I.D.  N  is an unpredictable return innovation. Coefficients under regime switching are calculated 

employing simulations (50,000 trials) and averaging across simulated samples of length equal to the available data 
(January 1999 – June 2003). In the table NA stands for ‘North American small caps’, and Pac for ‘Pacific’ portfolios. 
Bold coefficients are significantly different from zero. 
 
 

Coeff. Sample MS – ergodic 
SEU_large,EU_large,NA 0.110 0.025 
SEU_large,EU_large,Pac -0.126 -0.131 

SEU_large,EU_large,EU_small -0.167 -0.228 
SNA,NA,Pac 0.005 -0.007 

SNA,NA,EU_small -0.111 -0.070 
SNA,NA,EU_large 0.149 0.095 
SPac,Pac,EU_small -0.493 -0.341 
SPac,Pac,EU_large -0.203 -0.151 

SPac,Pac,NA -0.140 -0.086 
SEU_small,EU_small,EU_large -0.467 -0.460 

SEU_small,EU_small,NA -0.367 -0.323 
SEU_small,EU_small,Pac -0.525 -0.487 

   
SEU_large, EU_large, EU_large 0.186 0.110 

SNA,NA,NA 0.237 0.170 
SPac,Pac,Pac -0.086 -0.169 

SEU_small, EU_small, EU_small -0.711 -0.722 

 



Table 8 

Sample and Implied Co-Skewness and C-Kurtosis Coefficients of European Small Caps vs. 

an Equally Weighted International Equity Portfolio 
The table reports average sample co-skewness coefficients, 
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(i, j, l = Europe large, North America large, Pacific, Europe small, Equally weighted portfolio) and compares them with 
the co-kurtosis coefficients implied by a three-state regime switching model. Coefficients under multivariate regime 
switching are calculated employing simulations. Bold co-skewness coefficients are significantly different from zero; bold 
co-kurtosis coefficients are significantly different from their Gaussian counterparts. 
 
 

 Co-Skewness Co-Kurtosis 
 Sample MS - ergodic Sample MS - ergodic
 European Small Caps 
SEU_small,EU_sma ,EW_ptfll

l

-0.604 -0.566 − − 
SEU_small,EW_ptf,EW_ptf -0.440 -0.412 − − 
SEU_small,EU_small,Pac,EW_ptf − − 2.094 2.133 

SEU_small,EU_small,NA,EW_ptf − − 2.623 2.460 

SEU_small,EU_small,EU_large,EW_ptf − − 3.220 2.927 

SEW_ptf,EW_ptf,EU_small,Pac − − 1.945 2.133 

SEW_ptf,EW_ptf,EU_small,NA − − 2.680 2.428 

SEW_ptf,EW_ptf,EU_small,EU_large − − 3.168 2.790 

SEW_ptf,EW_ptf,EU_small,EU_small − − 3.460 3.262 

SEW_ptf,EW_ptf,EU_ptf,EU_sma l − − 3.903 3.713 

SEU_small,EU_small,EU_small,EU_ptf − − 3.315 3.071 

 European Large Caps 
SEU_large,EU_large,EW_ptf 0.031 -0.074 − − 
SEU_large,EW_ptf,EW_ptf -0.097 -0.154 − − 
SEU_large,EU_large,NA,EW_ptf − − 3.128 2.483 

SEU_large,EU_large,Pac,EW_ptf − − 1.465 1.616 

SEU_large,EU_large,EU_small,EW_ptf − − 3.320 2.730 

SEW_ptf,EW_ptf,EU_large,Pac − − 1.691 1.841 

SEW_ptf,EW_ptf,EU_large,NA − − 2.997 2.521 

SEW_ptf,EW_ptf,EU_large,EU_small − − 3.168 2.790 

SEW_ptf,EW_ptf,EU_large,EU_large − − 3.650 3.005 

SEW_ptf,EW_ptf,EU_ptf,EU_large − − 3.458 3.021 

SEU_large,EU_large,EU_large,EU_ptf − − 4.119 3.190 

 



Table 9 

Sample and Implied Co-Kurtosis Coefficients 
The table reports the sample co-kurtosis coefficients, 
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(i, j, l, b = Europe large, North America large, Pacific, Europe small) and compares them with the co-kurtosis 
coefficients implied by a three-state regime switching model: 

=tr
tt ss Σ+µ εt ,

where εt )I,( ~ 40I.I.D.  N  is an unpredictable return innovation. Coefficients under multivariate regime switching are 

calculated employing simulations (50,000 trials) and averaging across simulated samples of length equal to the available 
data (January 1999 – June 2003). In the table NA stands for ‘North American small caps’, and Pac for ‘Pacific’ equity 
portfolios. Bold co-skewness coefficients are significantly different from zero; bold co-kurtosis coefficients are 
significantly different from their Gaussian counterparts. 

 
 

Coeff. Sample MS – erg. Coeff. Sample MS – erg. 

KEU_large, EU_large,NA, EU_small 2.725 2.125 KPac,Pac,EU_small,EU_small 2.193 2.080 
KEU_large, EU_large,NA, Pac 1.137 1.123    

KEU_large, EU_large,Pac, EU_small 1.234 1.377 KEU_large,EU_large,EU_large,NA 3.450 2.586 
KNA,NA,EU_large,Pac 1.215 1.131 KEU_large,EU_large,EU_large,Pac 1.354 1.457 

KNA,NA,EU_large,EU_small 2.395 2.002 KEU_large,EU_large,EU_large,EU_small 3.727 2.847 
KNA,NA,Pac,EU_small 1.086 1.129 KNA,NA,NA,Pac 1.549 1.381 

KPac,Pac,EU_large,EU_small 1.330 1.496 KNA,NA,NA,EU_small 2.463 2.212 
KPac,Pac,EU_large,NA 1.243 1.273 KPac,EU_small,EU_small,EU_small 1.922 1.852 
KPac,Pac,EU_large,NA 1.117 1.221 KNA,NA,NA,EU_large 2.955 2.536 

KEU_small,EU_small,EU_large,NA 2.505 2.191 KPac,Pac,Pac,EU_large 1.469 1.606 
KEU_small,EU_small,EU_large,Pac 1.517 1.655 KEU_small,EU_small,EU_small,EU_large 3.508 3.290 

KEU_small,EU_small,,NA,Pac 1.246 1.376 KPac,Pac,Pac,NA 1.394 1.455 

   KEU_small,EU_small,EU_small,NA 2.760 2.665 
KEU_large,EU_large,NA,NA 2.985 2.412 KEU_small,EU_small,EU_small,Pac 2.437 2.363 
KEU_large,EU_large,Pac,Pac 1.229 1.562    

KEU_large,EU_large,EU_small,EU_small 3.324 2.856 KEU_large,EU_large,EU_large,EU_large 4.975 3.646 
KNA,NA,Pac,Pac 1.510 1.495 KNA,NA,NA,NA 3.689 3.434 

KNA,NA,EU_small,EU_small 2.369 2.198 KPac,Pac,Pac,Pac 3.395 3.258 

   KEU_small,EU_small,EU_small,EU_small 4.815 4.758 

 



Table 10 

Annualized Percentage Welfare Costs from Ignoring European Small Caps 
The table reports the (annualized, percentage) compensatory variation from restricting the asset menu to exclude 
European small caps. The table shows welfare costs as a function of the investment horizon; calculations were 
performed under a variety of assumptions concerning the coefficient of relative risk aversion and the possibility to 
short-sell. The investor is assumed to have a simple buy-and-hold objective. Panel A and B present results for end-of-
sample simulations (when assumptions are imposed on the regime probabilities) and for real-time portfolios, 
respectively. 
 

 Investment Horizon T (in weeks) 
 T=1 T=4 T=12 T=24 T=52 T=104 

Panel A – Simulations (based on end-of-sample parameter estimates) 
 Equal probabilities 

γ =5 34.94 11.87 5.92 4.38 4.33 2.96 
γ =10 3.57 1.86 1.24 1.06 1.03 0.74 

γ =5, short sales allowed 42.42 19.42 12.55 11.77 11.97 7.77 
γ =10, short sales allowed 3.53 1.43 0.79 0.61 0.53 0.41 

 Ergodic Probabilities 
γ =5 60.11 10.55 5.79 4.63 4.62 3.17 
γ =10 8.40 2.19 1.18 0.97 0.88 0.69 

γ =5, short sales allowed 77.90 9.95 5.68 4.95 5.02 3.51 
γ =10, short sales allowed 41.81 9.86 5.21 4.26 3.89 3.00 

Panel B – Real time recursive results 
 Full sample  (Jan. 2002 – June 2003) 

Mean 40.31 21.21 22.11 22.86 23.79 16.26 
Median 39.98 26.43 24.39 22.71 22.82 15.41 

Standard deviation 23.16 8.44 6.23 8.49 14.58 15.76 
t-stat 1.80 5.62 13.92 15.27 14.41 13.94 

 First sub-sample (Jan. 2002 – Sept. 2003) 
Mean 21.27 24.63 27.71 29.12 30.36 20.47 

Median 59.35 37.47 32.66 32.92 33.17 21.69 
Standard deviation 22.14 8.91 6.42 8.34 14.47 15.92 

t-stat 0.76 4.32 11.75 13.79 13.10 12.52 
 Second sub-sample (Oct. 2002 – June 2003) 

Mean 62.28 17.88 16.70 16.76 17.22 11.88 
Median 32.16 23.72 21.11 20.35 20.00 13.63 

Standard deviation 24.26 7.99 5.18 6.88 11.52 12.14 
t-stat 1.74 3.60 9.10 9.91 9.34 9.16 

 



Table 11 

Selection of Regime Switching Model for Returns on Equity Portfolios – Effects of Adding 

European and North American Small Caps 

The table shows estimation results for the regime switching model: 

tst t
r εµ +=  

where rt is a 4×1 vector collecting weekly total return series,  is the intercept vector in state s
tsµ t, and 

),( ~]'  [ 54321 tstttttt N Σ= 0ε εεεεε . The unobservable state st is governed by a first-order Markov chain that can 

assume three values. The first panel refers to the single-state case k = 1. Asterisks attached to correlation coefficients 
refer to covariance estimates.  
 

 Panel A – Single State Model 
 Europe – Large 

caps 
North America – 

Large caps Pacific 
Europe – 
Small caps 

North America 
– Small caps 

1. Mean excess return -0.0015 -0.0010 -0.0007 0.0002 0.0019 
2. Correlations/Volatilities      
Europe – Large caps 0.0370***     
North America – Large caps 0.7537*** 0.0285***    
Pacific 0.5086** 0.4822** 0.0259***   
Europe – Small caps 0.7816*** 0.6718*** 0.5403** 0.0222***  
North America – Small caps 0.6948*** 0.7992*** 0.4267** 0.7275*** 0.0301 

 Panel B – Three State Model 
 Europe – Large 

caps 
North America – 

Large caps Pacific 
Europe – 
Small caps 

North America 
– Small caps 

1. Mean excess return      
Bear State -0.0403*** -0.0248*** -0.0218*** -0.0214*** -0.0216**

Normal State -0.0015 -0.0009 0.0004 0.0024* 0.0046**

Bull State 0.0337*** 0.0204*** 0.0153*** 0.0131*** 0.0134**

2. Correlations/Volatilities      
Bear state:      
Europe – Large caps 0.0365***     
North America – Large caps 0.6850*** 0.0256***    
Pacific 0.3579** 0.2229* 0.0285***   
Europe – Small caps 0.8049*** 0.6547*** 0.6004*** 0.0324***  
North America – Small caps 0.7759*** 0.6757*** 0.3714** 0.7092*** 0.0378***

Normal state:      
Europe – Large caps 0.0242***     
North America – Large caps 0.7443*** 0.0216***    
Pacific 0.5445** 0.6008*** 0.0212***   
Europe – Small caps 0.7096*** 0.6616*** 0.6046*** 0.0146***  
North America – Small caps 0.6869*** 0.8410*** 0.5779** 0.7370*** 0.0234***

Bull state:      
Europe – Large caps 0.0359***     
North America – Large caps 0.5386*** 0.0330***    
Pacific -0.0551 -0.0067 0.0245***   
Europe – Small caps 0.6581*** 0.4863** -0.3451* 0.0167***  
North America – Small caps 0.4895* 0.7983*** -0.2535* 0.5554*** 0.0314***

3. Transition probabilities Bear State Normal State Bull State 
Bear State 0.2450** 0.0005 0.7545 

Normal State 0.0457* 0.9542*** 0.0001 

Bull State 0.5351** 0.1656* 0.2993*

* denotes 10% significance, ** significance at 5%, *** significance at 1%. 



Table 12 

Co-Skewness and C-Kurtosis Coefficients for Small Caps vs. an Equally Weighted Portfolio 
Coefficients under multivariate regime switching are calculated employing simulations (50,000 trials) and averaging 
across simulated samples of length equal to the available data (January 1999 – June 2003). 
 

 Co-Skewness Co-Kurtosis 
 Sample MS - ergodic Sample MS - ergodic
 European Small Caps 
SEU_small,EW_ptf,EW_ptf -0.422 -0.314   
SEU_small,EU_sma ,EW_ptfll

ll

ll

ll

ll

l

ll

-0.591 -0.275   
SEU_sma ,EU_small,NA_large,EW_ptf   2.627 2.619 
SEU_sma ,EU_small,NA_small,EW_ptf   2.709 1.700 
SEU_sma ,EU_small,Pac,EW_ptf   2.007 2.782 
SEU_sma ,EU_small,EU_large,EW_ptf   3.178 2.629 
SEW_ptf,EW_ptf,EU_small,NA_large   2.670 2.663 
SEW_ptf,EW_ptf,EU_small,NA_small   2.646 1.872 
SEW_ptf,EW_ptf,EU_small,Pac   1.827 2.907 
SEW_ptf,EW_ptf,EU_small,EU_large   3.094 2.751 
SEW_ptf,EW_ptf,EU_small,EU_small   3.377 3.058 
SEW_ptf,EW_ptf,EW_ptf,EU_sma l   3.222 3.136 
SEU_sma ,EU_small,EU_small,EW_ptf   3.845 3.173 
 North American Small Caps 
SNA_small,EW_ptf,EW_ptf -0.200 -0.286   
SNA_small,NA_small,EW_ptf -0.174 -0.252   
SNA_small,NA_small,NA_large,EW_ptf   2.422 1.655 
SNA_small,NA_small,EU_small,EW_ptf   1.869 1.827 
SNA_small,NA_small,Pac,EW_ptf   1.431 1.991 
SNA_small,NA_small,EU_large,EW_ptf   2.442 1.793 
SEW_ptf,EW_ptf,NA_small,NA_large   2.617 1.767 
SEW_ptf,EW_ptf,NA_small,EU_small   2.646 1.872 
SEW_ptf,EW_ptf,NA_small,Pac   1.576 2.162 
SEW_ptf,EW_ptf,NA_small,EU_large   2.725 1.930 
SEW_ptf,EW_ptf,NA_small,NA_small   2.747 2.199 
SEW_ptf,EW_ptf,EW_ptf,NA_small   2.936 2.318 
SNA_small,NA_small,NA_small,EW_ptf   2.825 2.263 

 



Table 13 

Effects of the Rebalancing Frequency 
This table reports the optimal weight to be invested in the various equity portfolios as a function of the rebalancing 
frequency for an investor with power utility and a constant relative risk aversion coefficient of 5. Nominal returns are 
assumed to be generated by the three-state regime switching model:  

tst εµr
t
+=  

Rebalancing Frequency Investment Horizon T (in months) 
 T=1 T=4 T=12 T=24 T=52 T=104 

Panel A - Optimal Allocation to European Small Cap Stocks 
IID (no predictability) 0.87 0.87 0.87 0.87 0.87 0.87 

 Bear state 1 
Buy-and-hold 0.00 0.00 0.00 0.00 0.00 0.00 
Bi-annually 0.00 0.00 0.00 0.00 0.00 0.00 
Quarterly 0.00 0.00 0.00 0.00 0.00 0.00 
Monthly 0.00 0.00 0.00 0.00 0.01 0.03 
Weekly 0.00 0.05 0.01 0.02 0.03 0.04 

 Normal state 2 
Buy-and-hold 1.00 1.00 1.00 1.00 1.00 1.00 
Bi-annually 1.00 1.00 1.00 1.00 1.00 1.00 
Quarterly 1.00 1.00 1.00 1.00 1.00 1.00 
Monthly 1.00 1.00 1.00 1.00 1.00 1.00 
Weekly 1.00 1.00 1.00 1.00 1.00 1.00 

 Bull state 3 
Buy-and-hold 0.00 0.00 0.00 0.00 0.00 0.00 
Bi-annually 0.00 0.00 0.00 0.00 0.03 0.04 
Quarterly 0.00 0.00 0.00 0.00 0.04 0.05 
Monthly 0.00 0.00 0.00 0.01 0.01 0.02 
Weekly 0.00 0.00 0.00 0.01 0.01 0.01 

 Steady-state probabilities 
Buy-and-hold 0.00 0.00 0.05 0.11 0.10 0.10 
Bi-annually 0.00 0.00 0.05 0.11 0.18 0.18 
Quarterly 0.00 0.00 0.05 0.11 0.18 0.19 
Monthly 0.00 0.00 0.08 0.13 0.20 0.20 
Weekly 0.00 0.00 0.00 0.02 0.06 0.07 

Panel B - Optimal Allocation to European Large Cap Stocks 
IID (no predictability) 0.00 0.00 0.00 0.00 0.00 0.00 

 Bear state 1 
Buy-and-hold 0.00 0.00 0.00 0.00 0.04 0.05 
Bi-annually 0.00 0.00 0.00 0.00 0.08 0.09 
Quarterly 0.00 0.00 0.00 0.00 0.09 0.10 
Monthly 0.00 0.00 0.09 0.08 0.07 0.06 
Weekly 0.00 0.00 0.04 0.02 0.01 0.00 

 Normal state 2 
Buy-and-hold 0.00 0.00 0.00 0.00 0.00 0.00 
Bi-annually 0.00 0.00 0.00 0.00 0.00 0.00 
Quarterly 0.00 0.00 0.00 0.00 0.00 0.00 
Monthly 0.00 0.00 0.00 0.00 0.00 0.00 
Weekly 0.00 0.00 0.00 0.00 0.00 0.00 

 Bull state 3 
Buy-and-hold 1.00 0.37 0.03 0.00 0.00 0.00 
Bi-annually 1.00 0.37 0.03 0.00 0.00 0.00 
Quarterly 1.00 0.37 0.03 0.00 0.00 0.00 
Monthly 1.00 0.37 0.18 0.09 0.08 0.08 
Weekly 1.00 1.00 0.97 0.90 0.88 0.87 

 Steady-state probabilities 
Buy-and-hold 0.00 0.00 0.00 0.00 0.00 0.00 
Bi-annually 0.00 0.00 0.00 0.00 0.00 0.00 
Quarterly 0.00 0.00 0.00 0.00 0.00 0.00 
Monthly 0.00 0.00 0.00 0.00 0.00 0.00 
Weekly 0.00 0.00 0.00 0.00 0.00 0.00 



Table 13 (continued) 

Effects of the Rebalancing Frequency 
 

Rebalancing Frequency Investment Horizon T (in months) 
Panel C - Optimal Allocation to North American Large Cap Stocks 

 T=1 T=4 T=12 T=24 T=52 T=104 
IID (no predictability) 0.00 0.00 0.00 0.00 0.00 0.00 

 Bear state 1 
Buy-and-hold 0.44 0.59 0.60 0.60 0.57 0.57 
Bi-annually 0.44 0.59 0.60 0.60 0.51 0.50 
Quarterly 0.44 0.59 0.60 0.60 0.50 0.49 
Monthly 0.44 0.59 0.49 0.50 0.50 0.49 
Weekly 0.44 0.46 0.48 0.49 0.50 0.50 

 Normal state 2 
Buy-and-hold 0.00 0.00 0.00 0.00 0.00 0.00 
Bi-annually 0.00 0.00 0.00 0.00 0.00 0.00 
Quarterly 0.00 0.00 0.00 0.00 0.00 0.00 
Monthly 0.00 0.00 0.00 0.00 0.00 0.00 
Weekly 0.00 0.00 0.00 0.00 0.00 0.00 

 Bull state 3 
Buy-and-hold 0.00 0.30 0.56 0.57 0.57 0.56 
Bi-annually 0.00 0.30 0.56 0.57 0.59 0.59 
Quarterly 0.00 0.30 0.56 0.57 0.58 0.58 
Monthly 0.00 0.30 0.42 0.50 0.54 0.53 
Weekly 0.00 0.00 0.00 0.00 0.02 0.02 

 Steady-state probabilities 
Buy-and-hold 0.55 0.53 0.51 0.46 0.46 0.46 
Bi-annually 0.55 0.53 0.51 0.46 0.40 0.40 
Quarterly 0.55 0.53 0.51 0.46 0.40 0.39 
Monthly 0.55 0.53 0.47 0.45 0.39 0.38 
Weekly 0.55 0.51 0.46 0.43 0.38 0.36 

Panel D - Optimal Allocation to Pacific Stocks 
 T=1 T=4 T=12 T=24 T=52 T=104 

IID (no predictability) 0.13 0.13 0.13 0.13 0.13 0.13 
 Bear state 1 

Buy-and-hold 0.56 0.41 0.40 0.40 0.39 0.38 
Bi-annually 0.56 0.41 0.40 0.40 0.41 0.41 
Quarterly 0.56 0.41 0.40 0.40 0.41 0.41 
Monthly 0.56 0.41 0.42 0.42 0.42 0.42 
Weekly 0.56 0.49 0.47 0.47 0.46 0.46 

 Normal state 2 
Buy-and-hold 0.00 0.00 0.00 0.00 0.00 0.00 
Bi-annually 0.00 0.00 0.00 0.00 0.00 0.00 
Quarterly 0.00 0.00 0.00 0.00 0.00 0.00 
Monthly 0.00 0.00 0.00 0.00 0.00 0.00 
Weekly 0.00 0.00 0.00 0.00 0.00 0.00 

 Bull state 3 
Buy-and-hold 0.00 0.33 0.41 0.43 0.43 0.44 
Bi-annually 0.00 0.33 0.41 0.43 0.38 0.37 
Quarterly 0.00 0.33 0.41 0.43 0.38 0.37 
Monthly 0.00 0.33 0.40 0.40 0.37 0.37 
Weekly 0.00 0.00 0.03 0.09 0.09 0.10 

 Steady-state probabilities 
Buy-and-hold 0.45 0.47 0.44 0.43 0.44 0.44 
Bi-annually 0.45 0.47 0.44 0.43 0.42 0.42 
Quarterly 0.45 0.47 0.44 0.43 0.42 0.42 
Monthly 0.45 0.47 0.45 0.42 0.41 0.42 
Weekly 0.45 0.49 0.54 0.55 0.56 0.57 



Figure 1 

Smoothed State Probabilities: Two-State Model for European, North American,  

and Pacific Equity Portfolios 
The graphs plot the smoothed probabilities of regimes 1-2 for the multivariate Markov Switching model comprising 
weekly total return series for North American, Pacific, and a European large caps portfolio (Dow Jones Stoxx 50). 
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Figure 2 

Buy-and-Hold Optimal Allocation – Restricted Asset Menu 
The graphs plot the optimal international equity portfolio weights when returns follow a two-state Markov Switching 
model as a function of: (i) the coefficient of relative risk aversion; (ii) the investment horizon. As a benchmark (bold 
horizontal lines) we also report the IID/Myopic allocation that obtains when returns have an IID multivariate Gaussian 
distribution. 
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Figure 3 

Welfare Costs of Ignoring Regime Switching – Restricted Asset Menu 
The graphs plot the compensatory variation (as a fraction of initial wealth) from ignoring the presence of regime 
switches in the multivariate process of asset returns. The graphs plot the welfare costs as a function of the investment 
horizon; calculations were performed for two alternative levels of the coefficient of relative risk aversion. The investor 
is assumed to have a simple buy-and-hold objective. 
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Figure 4 

Buy-and-Hold Real Time Optimal Allocation – Restricted Asset Menu 
The graphs plot the optimal international equity portfolio weights when returns follow a two-state Markov Switching 
model as a function of the coefficient of relative risk aversion for a few alternative investment horizons. The optimizing 
portfolio choice is recursively computed at the end of all weeks in the sample January 2002 – June 2003. In 
correspondence of each week, the models’ parameters are re-estimated on an expanding window of data. As a 
benchmark (bold lines) we also report the IID/Myopic allocation that obtains when returns have an IID multivariate 
Gaussian distribution. 
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Figure 5 

Smoothed State Probabilities: Three-State Model for European, North American,  

and Pacific Equity Portfolios – Effects of Adding European Small Caps 
The graphs plot the smoothed probabilities of regimes 1-3 for the multivariate Markov Switching model comprising 
weekly total return series for North American large, Pacific, and a European small (MSCI) and large caps portfolios. 
The bottom right panel shows the sum of the smoothed probabilities of states 1 and 3, characterized by high volatility. 

 

0.0

0.2

0.4

0.6

0.8

1.0

1/06/99 12/22/99 12/06/00 11/21/01 11/06/02

'High Volatility' = state 1 + 3 

0.0

0.2

0.4

0.6

0.8

1.0

1/06/99 12/22/99 12/06/00 11/21/01 11/06/02

Bear state    

0.0

0.2

0.4

0.6

0.8

1.0

1/06/99 12/22/99 12/06/00 11/21/01 11/06/02

Normal state    

0.0

0.2

0.4

0.6

0.8

1.0

1/06/99 12/22/99 12/06/00 11/21/01 11/06/02

Bull state   

 



Figure 6 

Buy-and-Hold Optimal Allocation 
The graphs plot the optimal international equity portfolio weights when returns follow a three-state Markov Switching 
model as a function of: (i) the coefficient of relative risk aversion; (ii) the investment horizon. As a benchmark (bold 
horizontal lines) we also report the IID/Myopic allocation. The asset menu includes European small caps. 
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Figure 7 

Welfare Costs of Ignoring Regime Switching 
The graphs plot the percentage compensatory variation from ignoring the presence of regime switches in the 
multivariate process of asset returns. The graphs plot the welfare costs as a function of the investment horizon; 
calculations were performed for two alternative levels of the coefficient of relative risk aversion. The investor is 
assumed to have a simple buy-and-hold objective. 
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Figure 8 

Buy-and-Hold Optimal Allocation – Asset Menu Expanded to North American Small Caps 
The graphs plot the optimal international equity portfolio weights when returns follow a three-state Markov Switching 
model as a function of: (i) the coefficient of relative risk aversion; (ii) the investment horizon.  
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Figure 9 

Buy-and-Hold Real Time Optimal Allocation – Asset Menu Expanded to  

North American Small Caps 
The graphs plot the optimal international equity portfolio weights when returns follow a three-state Markov Switching 
model. The optimizing portfolio choice is recursively computed at the end of all weeks in the sample January 2002 – 
June 2003. As a benchmark (bold lines) we also report the IID/Myopic allocation. The coefficient of relative risk 
aversion is set to 5. 
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Figure 10 

Buy-and-Hold Optimal Allocation – Long Horizon 
The graphs plot the optimal international equity portfolio weights when returns follow a three-state Markov Switching 
model and the coefficient of relative risk aversion is set at 5, as a function of the investment horizon. As a benchmark 
(bold horizontal lines) we also report the IID/Myopic allocation. The asset menu includes European small caps. 

European Small Caps - Long Horizon

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 6

Horizon (in months)
0

Regime 1 Regime 2 Regime 3
Equal probs. Ergodic probs. IID/Myopic  

European Large Caps - Long Horizon

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 6

Horizon (in months)

0

Regime 1 Regime 2 Regime 3
Equal probs. Ergodic probs. IID/Myopic  
North American Large Caps - Long Horizon

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 6

Horizon (in months)

0

Regime 1 Regime 2 Regime 3
Equal probs. Ergodic probs. IID/Myopic  

Pacific - Long Horizon

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 6

Horizon (in months)

0

Regime 1 Regime 2 Regime 3
Equal probs. Ergodic probs. IID/Myopic  



Figure 11 

Buy-and-Hold Optimal Allocation – Short Sales Allowed 
The graphs plot the optimal international equity portfolio weights when returns follow a three-state Markov Switching 
model as a function of: (i) the coefficient of relative risk aversion; (ii) the investment horizon. As a benchmark (bold 
horizontal lines) we also report the IID/Myopic allocation. The asset menu includes European small caps. 
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