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Abstract

Stochastic mortality, i.e. modelling death arrival via a jump process
with stochastic intensity, is gaining increasing reputation as a way to rep-
resent mortality risk. This paper represents a �rst attempt to model the
mortality risk of couples of individuals, according to the stochastic inten-
sity approach. We extend to couples the Cox processes set up, namely the
idea that mortality is driven by a jump process whose intensity is itself
a stochastic process, proper of a particular generation within each gen-
der. Dependence between the survival times of the members of a couple
is captured by an Archimedean copula.
We also provide a methodology for �tting the joint survival function by
working separately on the (analytical) copula and the (analytical) mar-
gins. First, we calibrate and select the best �t copula according to
the methodology of Wang and Wells (2000b) for censored data. Then,
we provide a sample-based calibration for the intensity, using a time-
homogeneous, non mean-reverting, a¢ne process: this gives the marginal
survival functions. By coupling the best �t copula with the calibrated mar-
gins we obtain a joint survival function which incorporates the stochastic
nature of mortality improvements. Several measures of time dependent
association can be computed out of it.

We apply the methodology to a well known insurance dataset, using
a sample generation. The best �t copula turns out to be a Nelsen one,
which implies not only positive dependency, but dependency increasing
with age.
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for providing the data used in this paper. They acknowledge support from
the European Science Foundation (ESF) through the �Advanced Mathe-
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errors are ours.

1



1 Introduction

Longevity risk, that is the tendency of individuals to live longer and longer,
has been increasingly attracting the attention of the actuarial literature. More
generally, mortality risk, that is the occurrence of unexpected changes in sur-
vivorship, is a well accepted phenomenon.
One way to incorporate improvements in survivorship, especially at old ages,

is to introduce the so called stochastic mortality. This boils down to describing
death arrival as a doubly stochastic or Cox process, i.e. in interpreting death
arrival as the �rst jump time of a Poisson-like process, whose intensity, contrary
to the one of the standard Poisson, is a stochastic process. A priori then two
sources of uncertainty impinge on each individual: a common one, represented
by the intensity, and an idiosyncratic one, represented by the actual jump time,
for a given intensity. Mortality risk is captured by the behavior of the com-
mon risk factor, the intensity. The term �common� extends here to a whole
generation within a gender.
The stochastic mortality approach has been proposed by Milevsky and Promis-

low (2001) and developed by Dahl (2004), Cairns et al. (2005), Bi¢s (2005),
Schrager (2006), Luciano and Vigna (2005). The probabilistic setting however
can be traced back to Brémaud (1981), and has been quite extensively applied
in the �nancial literature on default arrival (see for instance the seminal works
of Artzner and Delbaen (1992), Du¢e and Singleton (1999) and Lando (1998)).
Provided that univariate a¢ne processes are used for the intensity, the approach
leads to analytical representations of survival probabilities.
Up to now, no attempt has been made to model the survivorship of couples

of individuals stochastically, in the sense just speci�ed. This paper attempts to
�ll up this gap, making use of the copula approach. We model and calibrate
the marginal survival functions and the copula separately. In doing that, we do
not impose a speci�c copula; at the opposite, we select a best �t one in a group
of Archimedean ones. Having selected and calibrated it, by coupling it with
sample-calibrated margins, we get a fully analytical survival function. Since in
the end we work with analytical marginal survival functions as well as analytic
copulas, the joint survival function can be extended to durations longer than the
observation period and measures of age-depedent association can be discussed.
We apply our modelling and calibration procedure to a huge sample of joint

survival data, belonging to a Canadian insurer, which has been used in order to
discuss (non stochastic) joint mortality in Frees et al. (1996), Carriere (2000),
Shemyakin and Youn (2001) and Youn and Shemyakin (1999, 2001).
The outline of the paper is as follows: in Section 2 we recall the copula ap-

proach to joint survivorship and justify the copula class we are going to adopt,
the Archimedean one. In Section 3 we describe a copula calibration and selection
methodology, consistent with the copula class suggested above, and originally
proposed by Wang and Wells (2000b). Wang and Wells� methodology, which
in turn extends the approach of Genest and Rivest (1993) to the case with
censoring, has the advantage of allowing not only the calibration of the para-
meters for each Archimedean copula, but also of suggesting which is the best �t
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Archimedean copula in the calibrated group.
In Section 4 we review the stochastic mortality approach at the univariate

level, and the particular marginal model we are going to adopt. We explain
both the model and its calibration issues with uncensored and censored data.
From Section 5 onwards we apply the theoretical framework and the cali-

bration method to the data sample: we present the data set, �nd the empirical
margins with the Kaplan-Meier methodology, apply the Wang and Wells� copula
calibration and selection procedure, and compare its results with the ones of the
omnibus or pseudo maximum likelihood procedure. We then derive the mar-
ginal survival functions, adapting the procedure in Luciano and Vigna (2005).
In Section 6 the speci�c best �t copula obtained, together with the analytical
margins, enables us to present an estimate of the joint survival function and
to discuss the corresponding measures of time-dependent association, following
the results in Spreeuw (2006). Section 7 concludes.

2 Modelling bivariate survival functions with cop-

ulas

Suppose that the heads (x) and (y) ; belonging respectively to the gender m
(males) and f (females), have remaining lifetimes Tmx and T fy , respectively,
both with continuous distributions. We denote the marginal survival functions
by Smx and Sfy , respectively, so that, for all t � 0, Smx (t) = Pr [Tmx > t] and

Sfy (t) = Pr
�
T fy > t

�
. By Sklar�s theorem, there exists a copula, denoted by C,

such that for all (s; t) 2 R2+ the joint survival function of x and y, denoted by
S, can be represented in terms of the marginal ones:

S(s; t) = C(Smx (s); S
f
y (t)):

This representation is unique over the range of the margins.
The copula approach has become a popular method of modelling the (non

stochastic) bivariate survival function of the two lives of one couple. Working
on the same data set that we will use, both Frees et al. (1996) and Carriere
(2000) present fully parametric models, using maximum likelihood, where the
marginal distribution functions (Frees et al.) or survival functions (Carriere)
are assumed to be of Gompertz type. Frees et al. (1996) use the Frank�s copula
and couple the two lives from the time of birth. Carriere (2000) on the other
hand, discusses several copulas with more than one parameter (Frank, Clayton,
Normal, Linear Mixing, Correlated Frailty), and couples the lives at the start of
the observation period. Using the same data set, in an attempt to address the
issue of di¤erent types of dependence, Youn and Shemyakin (1999, 2001) re�ne
Frees et al.�s method by classifying individuals according to the age di¤erence
between the female and the male member of each couple. Shemyakin and Youn
(2001) adopt a Bayesian methodology as an alternative. All three papers use
the Gumbel-Hougaard copula.
With the exception of Carriere (2000), the existing literature based on the

same sample does not perform a best �t copula choice. However, since di¤erent
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copulas entail di¤erent characteristics regarding the type of dependence and
aging properties, as shown in Spreeuw (2006), the choice of an appropriate
copula is essential. Ideally, one should use the best copula among all possible
ones. Practically, the process of choosing a copula must be restricted to a
�nite number of them. This process cannot be other than independent of the
speci�cation of the margins: Genest and Rivest (1993) have shown that this is
feasible for Archimedean copulas, as long as data are complete, i.e. uncensored.
Denuit et al. (2001) managed to get hold of complete data by visiting cemeteries.
Applying the method developed by Genest and Rivest (1993), they established
a weak correlation of lifetimes between males and females, and identi�ed several
plausible candidates for the copula.
Genest and Rivest�s method cannot be used if data are censored. This is

the case for the data set from the large Canadian insurer which we are going to
use. The period of observation is slightly longer than �ve years, and most lives
were still alive at the end of the period of observation. Wang and Wells (2000b)
have extended Genest and Rivest�s method to bivariate right-censored data.
The procedure requires a nonparametric estimator of the joint bivariate survival
function. A popular candidate of such an estimator is Dabrowska (1988), which
needs estimates of the margins in accordance with Kaplan-Meier.
We are going to apply the Wang and Wells� method for the data set at hand,

since their methodology allows

� the calibration of the copula parameters - for any given copula family in
the Archimedean class � and

� the choice of the best �t copula among the calibrated ones.

This paper then di¤ers from the aforementioned papers on bivariate survival
models (Frees et al., 1996, Carriere, 2000, Shemyakin and Youn, 2001, Youn and
Shemyakin, 1999, 2001, Denuit et al., 2001) not only because we include sto-
chastic mortality improvements at the marginal level, but also because, instead
of assuming a speci�c copula, we select a best �tting one by following the Wang
and Wells procedure for censored data. Using Wang and Wells means that we
maintain the Archimedean assumption for the copula.
Archimedean copulas may be constructed using a function � : I ! <�+;

continuous, decreasing, convex and such that �(1) = 0. Such a function � is
called a generator. It is called a strict generator whenever �(0) = +1. Having
de�ned the pseudo-inverse of �; ��1 ; in such a way that, by composition with
the generator, it gives the identity:

��1 (� (v)) = v

an Archimedean copula CA is generated as follows:

CA(v; z) = ��1 (�(v) + �(z)) (1)

Archimedean copulas have been widely used, due to their mathematical tractabil-
ity. The Archimedean class is rich, so allowing for Archimedean copulas does
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No. Name Generator C (u; v) Kendall�s �
� (t)

1 Clayton t�� � 1
�
u�� + v�� � 1

�� 1
� �

�+2

2 Gumbel- (� ln t)� exp

�
�
�
(� lnu)� + (� ln v)�

� 1
�

�
1� 1

�

Hougaard

3 Frank � ln e��t�1
e���1

� 1
�
ln

�
1 +

(e��u�1)(e��v�1)
e���1

�
1� 4

�

�R �
t=0

t
�(et�1)dt� 1

�

4 Nelsen exp
�
t��
�
� e

�
ln
�
exp

�
u��

�
+ exp

�
v��

�
� e
��� 1

� 1� 4
�

�
1
�+2

�
R 1
t=0

t�+1 exp
�
1� t��

��

5 Special 1
t�
� t� 2�

1
�

�
�W +

p
4 +W 2

�
; Complicated form

W = � (u) + � (u)

Table 1: Archimedean copula families

not seem to be very restrictive. We refer the reader to the book by Nelsen
(2006) for a review of Archimedean copulas� de�nition and properties, and to
Cherubini et al. (2004) for their applications.
In the Archimedean class in particular we will take into consideration the

copulas in Table 1.
We have selected these families following the results in Spreeuw (2006), who

studied the type of time-dependent association between lives implied by many
Archimedean copulas.
Three measures of time-dependent association between Tmx and T fy have

been introduced in the literature. We will deal with all of them in Section 6.
First of all, Anderson et al. (1992) introduced the rescaled conditional prob-

ability, denoted by  1 (s; t):

 1 (s; t) =
S(s; t)

Smx (s)S
f
y (t)

; (2)

for �xed t and s. If Tmx and T fy are independent, then  1 (s; t) = 1 for all s � 0
and t � 0. If Tmx and T fy are positively associated, then  1 (s; t) > 1 for all
s > 0 and t > 0, with  1 monotone nondecreasing in each argument. This
measure has also an interpretation in terms of conditional probabilities, since

 1 (s; t) =
Pr
�
Tmx > s

��T fy > t
�

Pr [Tmx > s]
=
Pr
�
T fy > t jTmx > s

�

Pr
h
T
f
y > t

i

Secondly Anderson et al. (1992) discuss the conditional expected residual
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lifetimes of (x) and (y) ; which we will specify as  2x (s; t) and  2y (s; t), respec-
tively

 2x (s; t) =
E
�
Tmx � s

��Tmx > s; T fy > t
�

E [Tmx � s jTmx > s ]

 2y (s; t) =
E
�
T fy � t

��Tmx > s; T fy > t
�

E
h
T
f
y � t

���T fy > t
i : (3)

The measure  2x (s; t) ( 2y (s; t)) describes how the knowledge that T fy > t

(Tmx > s) a¤ects the expected lifetime of Tmx (T fy ). Independence of T
m
x and T fy

implies  2x (s; t) =  2y (s; t) = 1, while if T
m
x and T fy are positively associated,

then  2x (s; t) > 1 and  2y (s; t) > 1 for all s > 0 and t > 0, with  2x (s; t)
( 2y (s; t)) monotone nondecreasing in t (s). In this paper we will concentrate
on the behaviour of the functions  2x (0; t) and  2y (s; 0).
The third measure is the cross-ratio function CR (S (tt; t2)), de�ned in Clay-

ton (1978) and studied by Oakes (1989):

CR (S (s; t)) =
S (s; t) d

ds
d
dt
S (s; t)

d
ds
S (s; t) d

dt
S (s; t)

:

Spreeuw (2006) has shown that for Archimedean copulas and u = s = t, the
cross ratio de�nition reduces to an expression in terms of the inverse of the
generator:

CR (S (u; u)) =

0
B@
��1 (v)

�
��1

�00
(v)

��
��1

�0
(v)
�2

1
CA
v=�(S(u;u))

: (4)

Oakes (1994) derived a similar expression for frailty models (which are a subclass
of Archimedean copula models).
The cross-ratio function speci�es the relative increase of the force of mor-

tality of the survivor, immediately upon death of the partner. If CR (S (u; u))
increases (decreases) as a function of u, this means that members of a cou-
ple become more (less) dependent on each other as they age. Manatunga and
Oakes (1996) have demonstrated that increasing dependence with age entails
an increasing plot of CR (v) versus 1 � v, for v 2 [0; 1] (Note that S (0; 0) = 1
and limu!1 S (u; u) = 0.)
The �rst copula in Table 1, Clayton, will be studied because it is well known

and bears the special property of the association remaining constant over time.
Copulas 2 (Gumbel-Hougaard) and 3 (Frank) share the characteristics of being
well known as well. Moreover, unlike Clayton, the association is decreasing
over time. Copula families 4 and 5 are due to Nelsen (2006). Family 4 can be
identi�ed as �Family 4:2:20� in Chapter 4 of Nelsen (2006) and will henceforth
be referred to as the �Nelsen copula�. Copula 5, which is also due to Chapter
4 of Nelsen (2006), will be labelled as the �Special copula�. It was studied in
Spreeuw (2006). Copulas 4 and 5, unlike the �rst three copulas, have association
increasing over time.
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3 Copula estimate and best �t choice

In this section we describe the procedure followed in order to select and calibrate
an Archimedean copula under double censoring.

3.1 The distribution function of the Archimedean copula

Let Z = S
�
Tmx ; T

f
y

�
. De�ne K as the distribution function of Z. Note that

we have that Z = C (U; V ) where (U; V ) is a random couple with unit uniform
margins, and C the copula.
Genest and Rivest (1993) have shown that, for Archimedean copulas, with

generator �, this distribution function K is given by

K (z) = z � � (z) (5)

where

� (z) = z � � (z)

�
0

(z)
; 0 < z � 1: (6)

and �
0

is the generator derivative. The function K is to be estimated from the
data. We will make a distinction between complete data, such as in Denuit et
al. (2001), and censored data, such as in the application of the current paper.

3.1.1 General principle without censoring

Genest and Rivest (1993) have shown that, for complete data of size n, K can

be estimated using its empirical counterpart, bKn, de�ned as

bKn (z) =
1

n
# fi jzi � z g where zi =

1

n� 1#
��
x(j); y(j)

� ��x(j) < x(i); y(j) < y(i)
	
;

where the symbol# indicates the cardinality of a set and
��
x(i); y(i)

�
; i = 1; :::; n

	

are the observed data.

3.1.2 Wang-Wells empirical version of the generator in the presence
of censored data

Wang and Wells (2000b) have proposed a modi�ed estimator of K for censored
data. Since K can be written as

K (v) = Pr
�
S
�
Tmx ; T

f
y

�
� v

�
= E

h
IfS(Tmx ;T

f
y )�vg

i
;

the estimator is given by

bKn (v) =

Z 1

0

Z 1

0

IfbS(s;t)�vgdbS (s; t) ; (7)

where bS stands for a nonparametric estimator of the joint survival function,
taking censoring into account. For bS we will use the estimator introduced in
Dabrowska (1988).

7



3.1.3 Dabrowska�s estimator

Denote by bSm and bSf the Kaplan-Meier estimates of the univariate survival
functions of Tmx and T fy , and, for i 2 f1; ::; ng, let �1i and �2i be the indicators
of the event that observations x(i) and y(i), respectively, will be uncensored.
Furthermore, de�ne

bH (s; t) =
1

n
#
�
i
��x(i) > s; y(i) > t

	
;

bK1 (s; t) =
1

n
#
�
i
��x(i) > s; y(i) > t; �1i = 1; �2i = 1

	
;

bK2 (s; t) =
1

n
#
�
i
��x(i) > s; y(i) > t; �1i = 1

	
;

bK3 (s; t) =
1

n
#
�
i
��x(i) > s; y(i) > t; �2i = 1

	
;

and

b�11 (s; t) =

Z s

u=0

Z t

v=0

bK1 (du; dv)
.
bH
�
u�; v�

�
;

b�10 (s; t) = �
Z s

u=0

bK2 (du; t)
.
bH
�
u�; t

�
;

b�01 (s; t) = �
Z t

v=0

bK3 (s; dv)
.
bH
�
s; v�

�
:

Dabrowska�s estimator is:

bS (s; t) = bSm (s) bSf (t)
Y

0<u�s
0<v�t

(1� L (4u;4v)) ; (8)

with

L (4u;4v) =
b�10 (4u; v�) b�01 (u�;4v)� b�11 (4u;4v)�
1� b�10 (4u; v�)

��
1� b�01 (u�;4v)

� ; (9)

with 4u = u � u�, and 4v = v � v�. Then b�11 (4u;4v) is de�ned as the
estimated hazard function of double failures (i.e. deaths) at point (u; v), while
b�10 (4u; v�) and b�01 (u�;4v) are the estimated hazard functions of failures of
(x) at u and (y) at v, respectively, given the exposed to risk de�ned at (u; v).
The principle of equation (9) can be derived from the numerator. We match
the expected number of joint failures in case of independence, with the actual
number of joint failures. A negative di¤erence implies positive association. We
de�ne

F (s; t) =
Y

0<u�s
0<v�t

(1� L (4u;4v)) ; (10)

as the multiplier by which the joint survival function di¤ers from the one under
independence (see equation (8)). It follows that positive association is implied
if F (s; t) � 1.
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3.2 Wang-Wells theoretical version of the generator in the
presence of censored data

Wang and Wells also suggested a procedure for obtaining the theoretical version
of K. This version can be compared with the empirical one for each copula,
under censored data, and provides a corresponding best �t selection criterium
among di¤erent copulas. As is known, the original procedure in Genest and
Rivest (1993) for Archimidean copula selection consists in

1) determining - for each candidate copula - the parameter value �̂ which
corresponds to a (common) estimate �̂ of the Kendall�s tau coe¢cient, by
working the parameter out of the relationship

�̂ = 4

Z 1

�

�(v)dv + 1 (11)

where �(v) is given by (6);
2) building - again for each copula - a theoretical K, K�b�

, by substituting

in (5), for a given generator, the estimate �̂;
3) selecting as best �t copula the one whose theoretical K is the least distant

- according to the L2 or other norms - from the empirical one, bKn.
This procedure is appropriate for complete data, but is not applicable with-

out provisos in the bivariate censored case. It is still applicable when the greatest
observations are not censored, as shown by Wang and Wells (2000a) and done
by Denuit et al. (2004). It is, however, not applicable when, as in our case,
both observations can be censored. This is due to the fact that a consistent es-
timator for Kendall�s tau does not exist in the latter case. Therefore, we adopt
the modi�ed Wang and Well�s procedure, which comprises the following steps:
1�) choosing as parameter value �̂ for each copula the one which minimizes

the distance between the corresponding theoretical and the empirical K, namely
K�b�

and bKn;

2�) selecting as best �t copula the one which minimizes such a distance,
3�) getting an estimate of Kendall�s tau from the parameter value of the best

�t copula, inverting the relationships used sub 1) above.
In symbols, at stage 1�) we de�ne K�b�

(v) = v � ��b� (v), and choose as

parameter estimate b� the one which makes the corresponding theoretical K,
K�b�

; the least distant from the empirical K, bKn. In the present paper, as in
Wang and Wells, the distance or error is de�ned in the usual quadratic sense,
i.e. it is taken under the L2 norm:

error (��) =

Z 1

�

�
K��

(v)� bKn (v)
�2
dv: (12)

Therefore

b� = argmin
�

Z 1

�

�
K��

(v)� bKn (v)
�2
dv (13)
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In turn, the lower bound for the computation of the error, �; will taken to be
the minimum value admissible according to Wang and Wells, in the presence of
censoring, that is the smallest value for which the empirical K is positive:

� = min f� : K(�) > 0g (14)

In this way, we use all the available information, given double censoring.
At stage 2�), we select the copula which minimizes the (minimum) error:

error
�
�b�
�
=

Z 1

�

�
K�b�

(v)� bKn (v)
�2
dv: (15)

As a robustness check1 , we suggest double checking the result with another
distance de�nition. A natural candidate is the distance of the sup norm, namely:

error0
�
�b�
�
= sup

�<�<1

���K�b�
(v)� bKn (v)

��� dv:

At stage 3�), we get the corresponding dependence measure by using, in corre-
spondence to the best �t copula, the general relationship (11), which, for the
estimated values, becomes

�̂ = 4

Z 1

�

�
v �K�b�

(v)
�
dv + 1

3.3 Omnibus procedure

In order to con�rm the results of the procedure described above, we estimate the
dependence parameter and compare the copula �t through the pseudo-maximum
likelihood or omnibus procedure. This method has been described in broad
terms by Oakes (1994). Its statistical properties are analyzed in Genest et al.
(1995). It is discussed in Cherubini, Luciano, Vecchiato (2004).
The procedure treats marginal distributions as nuisance parameters of in�-

nite dimension. The margins are estimated nonparametrically by rescaled ver-
sions of the Kaplan-Meier estimators, with the rescaling factor (multiplier) equal
to n /(n+ 1) . The loglikelihood function to be maximized, denoted by L (�),
has the following shape:

L (�) =
nX

i=1

2
4 �1i �2i ln [c� (ui; vi)] + (1� �1i) �2i ln

h
@C�(ui;vi)

@v

i

+�1i (1� �2i) ln
h
@C�(ui;vi)

@u

i
+ (1� �1i) (1� �2i) ln [C� (ui; vi)]

3
5 ;

where (ui; vi) =
�
bSm (xi) ; bSf (yi)

�
, C� (ui; vi) is the copula under consideration,

c� (ui; vi) its density (i.e. the derivative with respect to both arguments) and

1We do not provide a formal test of the hypothesis that the resulting copula is the popula-
tion one, since the bootstrap methodology would be based on a variance estimate, the Wang
and Wells� one, which has been proved by Genest, Quessy and Rémillard (2006) not to be
valid. We thank B. Rémillard for having signalled to us this limit of the formal test.
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�1i �2i are as de�ned in section (8). Note that this procedure could also be
applied to non Archimedean copulas; it leads to

�̂ = argmin
�
L (�)

and to selecting the copula family whose optimal loglikelihood, L(�̂), is maximal.
Similarly to the Wang and Well�s method, also the omnibus relies on em-

pirical margins. Both therefore guarantee independency of the copula selection
from the margin representation. We now turn to the margin selection procedure.

4 Marginal stochastic mortality

It has been widely accepted that mortality has improved over time, and dif-
ferent generations have di¤erent mortality patterns: according to the standard
terminology, we will call this phenomenon mortality risk. Evidence of this phe-
nomenon is provided by Cairns et al. (2005), who present also a very detailed
discussion of the di¤erent existing approaches for modelling it. Essentially, most
of these approaches rely on a continuous time stochastic process for the instan-
taneous mortality intensity, which can be interpreted as a stochastic force of
mortality. In order to de�ne it appropriately, in what follows we brie�y describe
the doubly stochastic approach to mortality modelling. Then we summarize
some previous �ndings, which justify the modelling choice for the intensity made
in this paper.

4.1 Theoretical framework

4.1.1 Cox processes

Following Lando (1998, 2004), let us assume a complete probability space (
;F ;P);
a process Xt of R

d -valued state variables (t � T ) and the �ltration fGt : t � 0g
of sub-�-algebras of F generated by X; i.e. Gt = �fXs; 0 � s � tg, satisfying
the usual conditions.
Let � be a nonnegative measurable function s.t.

R t
0
�(Xs)ds < 1 almost

surely and de�ne the �rst jump time of a nonexplosive adapted counting process
Nt as follows:

� = inf

�
t :

Z t

0

�(Xs)ds � E1

�
(16)

where E1 is an exponential random variable with unit parameter. In addition,
let us consider the enlarged �ltration Ft, generated by both the state variable
and the jump processes:

Ft = Gt _Ht;

Ht = �fNs; 0 � s � tg

and assume that the H0 �ltration is trivial, in that no jump occurs at time 0:
Under this construction, the process Nt is said to admit the intensity �(Xs), if

11



the compensator of Nt admits the representation
R t
0
�(Xs)ds, i.e. if

Mt = Nt �
Z t

0

�(Xs)ds

is a local martingale. If the stronger condition E
�R t

0
�(Xs)ds

�
<1 is satis�ed,

Mt = Nt �
R t
0
�(Xs)ds is a martingale.

Intuitively, this implies that, given the history of the state variables up to time
t, the counting process is "locally" an inhomogeneous Poisson process, which
jumps according to the intensity �(Xt):

E(Nt+�t �NtjGt) = �(Xt)�t+ o(�t):

Formally, the construction (16) implies that the survival function of the �rst
jump time � , evaluated at time 0, and conditional on knowledge of the state
process up to time t, is

Pr(� > tjGt) = exp
�
�
Z t

0

�(Xs)ds

�

where Pr(:) is the probability associated to the measure P. It can also be shown,
by simple conditioning, that the time 0 unconditional survival probability, which
we will denote as S(t), is

S(t) = Pr(� > t) = E

�
exp

�
�
Z t

0

�(Xs)ds

��
: (17)

The unconditional probability at any date t0 greater than 0 can be shown to be

Pr(� > t j Ft0) = If�>t0gE
�
exp

�
�
Z t

t0
�(Xs)ds

�
j Gt0

�

where If�>t0g is the indicator function of the event � > t0.
A nonexplosive counting process Nt constructed as above is said to be a Cox

or doubly stochastic process driven by fGt : t � 0g. The corresponding �rst jump
time is doubly stochastic with intensity �(Xs).

As a particular case, any Poisson process is a doubly stochastic process driven
by the �ltration Gt = (;;
) = G0 for any t � 0, in that the intensity is deter-
ministic.

These results can be naturally applied in the actuarial domain: if � is the
future lifetime of a head aged x, Tx, his/her survival function, Sx(t), is

Sx(t) = Pr(Tx > t) = E

�
exp

�
�
Z t

0

�(Xs)ds

��
: (18)

12



4.1.2 A¢ne processes

In general, the expectations (17) and (18) are not known in closed form: how-
ever, a remarkable exception is the case in which the dynamics of X is given by
the SDE:

dX(t) = f(X(t))dt+ g(X(t))d ~W (t) + dJ(t);

where ~W is an n-dimensional Brownian motion, J is a pure jump process, and,
above all, the drift f(X(t)), the covariance matrix g(X(t))g(X(t))0 and the jump
measure associated with J have a¢ne dependence on X(t). Such a process is
named an a¢ne process, and a thorough treatment of these processes is in Du¢e
et al. (2003).

The convenience of adopting a¢ne processes in modelling the intensity lies in
the fact that, under technical conditions, it yields:

Sx(t) = E
h
e
R
t

0
��(X(s))ds

i
= e�(t)+�(t)�(X(0)); (19)

where the coe¢cients �(�) and �(�) satisfy generalized Riccati ODEs (see for
instance Du¢e et al., 2000). The latter can be solved at least numerically
and in some cases analytically. Therefore, the problem of �nding the survival
function becomes tractable, whenever a¢ne processes for X are employed.

4.2 Selection of the intensity

In the existing actuarial literature, the � function has been chosen to be the
identity, that is the mortality intensity is the direct driving force of the double
counting process, and di¤erent classes of a¢ne processes have been chosen for
it. For example, Milevsky and Promislow (2001) investigate a so-called mean
reverting Brownian Gompertz speci�cation: the intensity ht is given by

ht = h0e
gt+�

R
t

0
e�b(t�u)dW

h
u

t ;

with g; �; b constant and the Brownian motion W uni-dimensional.
Dahl (2004) selects an extended Cox-Ingersoll-Ross (CIR) process, i.e. a

time-inhomogeneous process �, reverting to a deterministic function of time

d�x+t = (�
�(t; x)� �(t; x)�x+t)dt+ ��(t; x)

p
�x+tdWt;

where x is the initial age.
Bi¢s (2005) chooses two di¤erent speci�cations for the intensity process. In

the �rst one, the intensity �t is given by a deterministic function of time, m(t),
plus a mean reverting jump di¤usion process Yt, with dynamics given by the
SDE

dYt = (y(t)� Yt)dt+ �dWt � dJt:
In the second one, which is a two factor model, the intensity �t is a CIR-
like process, mean reverting to another process �t. The dynamics of the two
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processes are given by

d�t = 1(�t � �t)dt+ �1
p
�tdW

1
t

d�t = 2(m(t)� �t)dt+ �2
p
�t �m�(t)dW 2

t :

Schrager (2006) proposes an M -factor a¢ne mortality model, whose general
form is given by

�x(t) = g0(x) +
MX

i=1

Yi(t)gi(x);

where the factors Yi are mean reverting.
Luciano and Vigna (2005) explore the following models: an Ornstein Uhlen-

beck, a mean reverting with jumps and a CIR process as concerns the mean-
reverting group, a Gaussian and a non Gaussian Feller type process without
mean reversion, but with and without jumps, as concerns the non-mean revert-
ing set.
Among the one-factor models, Bi¢s (2005) �ts his mean reverting time inho-

mogeneous intensity to some Italian mortality tables, while Luciano and Vigna
(2005) calibrate their time-homogeneous, simpler processes to the Human Mor-
tality database for the UK population. In doing the calibration, they assume
negative jumps, so as to incorporate sudden improvements in non-diversi�able
mortality. As a whole, they show that, among time-homogeneous di¤usion and
jump di¤usion processes, the ones with constant drift "beat" the ones with
mean reversion, as descriptors of population mortality. Both the �t and the
predictive power of the non mean reverting processes - when they are used for
mortality forecasting within a given cohort - are very satisfactory, in spite of the
analytical simplicity and limitations of the theoretical models. Among them, no
one seems to outperform the others. Moreover, for di¤erent generations, di¤er-
ent estimates of parameters are obtained: this con�rms that generation e¤ects
cannot be ignored.
The results obtained in Luciano and Vigna (2005) justify the choice, made

in the present paper, of an a¢ne, time-homogeneous intensity process, without
mean reversion. In particular, we will use a non Gaussian Feller model, since in
this case the intensity can never become negative. The Feller intensity, for the
generation born x years ago, follows the equation

d�x(s) = ax�x(s)ds+ �x
p
�x(s)dW

x
s ;

where ax > 0 and �x � 0. The corresponding survival probability2 is given by
(19), with �(X) = �x, i.e.

Sx(t) = E
h
e
R
t

0
��x(s)ds

i
= e�x(t)+�x(t)�x(0); (20)

2These probabilities are decreasing in age t if and only if

ebt(�2 + 2d2) > �2 � 2dc

A su¢cient condition for this is that �2 � 2dc < 0.
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where, omitting the dependence on the cohort or generation x for simplicity

(
�(t) = 0

�(t) = 1�ebt

c+debt

8
<
:

b = �
p
a2 + 2�2

c = b+a
2

d = b�a
2

The parameters a and � can be obtained either from mortality tables, or,
as we will do below, on sample, censored data. In both cases they can be
calibrated by minimizing the mean squared error between the theoretical and
actual probabilities: in the mortality table case the actual probabilities are the
table ones, while in the sample case they are the empirical ones, as obtained,
for instance, by the classical Kaplan-Meier procedure for censored data.

5 Application to the Canadian data set

5.1 Description of the data set

We use the same data set as Frees et al. (1996), Carriere (2000) and Youn and
Shemyakin (1999, 2001). The original data set concerns 14,947 contracts in force
with a large Canadian insurer. The period of observation runs from December
29, 1988, until December 31, 1993. Like the aforementioned papers, we have
eliminated same-sex contracts (58 in total). Besides, like Youn and Shemyakin
(1999, 2001), for couples with more than one policy, we have eliminated all but
one contracts (3,435 contracts). This has left us with a set of 11,454 married
couples and contracts.
Since, as explained above, the methodology for the marginal survival func-

tions applies to single generations, we focus on a limited range of birth dates,
both for males and females. In doing this, we have also taken into consideration
the fact that the average age di¤erence between married man and women in
the sample, obtained after eliminating same sex and double contracts, is three
years. We have selected the generation of males born between January 1st,
1907 and December 31, 1920 and those of females born between January 1st,
1910 and December 31, 1923. These two subsets, which amount to 5,025 and
5,312 individuals respectively, have been used for the estimate of the marginal
survival functions. Then, in order to estimate joint survival probabilities, we
have further concentrated on the couples whose members belong to the genera-
tion 07-20 for males and 10-23 for females. This subset includes a total of 3,931
couples. Both individuals and couples are observable for nineteen years, because
they were born during a fourteen year period and the observation period is �ve
years. In focusing on a generation and allowing for the three-year age di¤erence,
we have considered only one illustrative example; however, the procedure can
evidently be repeated for any other couple of generations.

15



On the chosen generation, we adopt the general procedure sketched in Sec-
tion 4 for the margins and the one in Section 3 for the joint survival function.
We �rst obtain the empirical margins, using the Kaplan-Meier methodology.

These margins feed the Dabrowska estimate for the empirical joint survival
function. Starting from it, the best �t analytical copula is estimated using the
Wang and Wells (2000b) method. Like Denuit et al. (2004), we perform a check
of the parameters and of the best �t choice using the omnibus procedure.
The marginal Kaplan-Meier data are used also as inputs for the calibration

of the analytical marginal survival functions, according to the methodology in
Luciano and Vigna (2005).
The �nal step of the calibration procedure involves obtaining the joint ana-

lytical survival function from the best �t copula and the calibrated margins.

5.2 Kaplan-Meier estimates of marginal survival functions

The Kaplan-Meier maximum likelihood estimates of the marginal survival prob-
abilities are collected in Table 2.

MALES FEMALES

t tp68 tp65

1 0.972253 0.9877123

2 0.96103 0.9818795

3 0.938278 0.977377

4 0.913871 0.970495

5 0.89417 0.9646967

6 0.869726 0.9572001

7 0.845971 0.947749

8 0.815979 0.9322838

9 0.783494 0.9199416

10 0.758918 0.9073177

11 0.730908 0.8941103

12 0.696391 0.8814861

13 0.657758 0.8654661

14 0.603822 0.8494678

15 0.557302 0.829017

16 0.518074 0.7921956

17 0.483845 0.7559616

18 0.401803 0.7205523

19 0.331582 0.6826285

Table 2

We notice that, di¤erently from both Carriere (2000) and Frees et al. (1996),
we can calculate the empirical survival probabilities tpx only until t = 19. This
is due to the limited range of birth dates of our generations, coupled with the
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�ve year length of observation. Based on the explanation above, we take the
initial age x to be 68 for males, 65 for females.

5.3 The bivariate survival function (Dabrowska)

Given the empirical margins in Table 2, provided by the Kaplan-Meier method,
we reconstruct the joint empirical survival function using the Dabrowska esti-
mator. We have simpli�ed the estimator by truncating to integer durations.
This means that e.g. a duration of k (integer) corresponds to death between k
and k + 1. As data of death between durations 5 and 6 were incomplete (due
to the maximal period of observation of 5.0075 years), we have not considered
any deaths more than �ve years after the start of the observation.
In Table 3 we present the multipliers F (s; t), as de�ned in equation (10).

As usual with censoring, due to the time frame of observation of �ve years, we
cannot explicitly compute the multipliers for durations greater than �ve: for
durations greater than the observation period, we take the multiplier computed
for the maximal duration. Because of this, our estimate of the joint survival
function will be conservative.
We notice that all the multipliers are greater than one. This indicates posi-

tive association and con�rms our intuition about the dependency of the lifetimes
of couples. Later on, we will provide an appropriate measure (Kendall tau) of
the amount of association.

F-function 0 1 2 3 4 >=5

0 1 1 1 1 1 1

1 1 1.000637 1.000892 1.001329 1.001972 1.002155

2 1 1.001055 1.004109 1.005851 1.006285 1.007077

3 1 1.001509 1.004665 1.00909 1.009978 1.010515

4 1 1.001524 1.004547 1.008826 1.011508 1.012414

>=5 1 1.001966 1.00483 1.009402 1.012536 1.017135

Table 3

Another relevant feature of the data, which can be captured from the table,
is the fact that the multipliers are generally increasing per row and per column:
this means that the amount of association is increasing. Namely, it means
that, for given survival time of one individual in the couple, the conditional
survival probability of the other member is more and more di¤erent from the
unconditional one as time goes by.

5.4 The copula choice (Wang & Wells)

The Dabrowska empirical estimate of the joint survival function in turn is used
as an input for K̂; the empirical version of the K function, according to a
discretized version of formula (7). In order to obtain the latter we divide the
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unit interval into a thousand subintervals3 . Figure 1 presents the empirical
estimate for K; K̂.

Empirical K
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Figure 1

We observe that K̂(v) is zero for v < 0:23; because the smallest value of
S(s; t) is S(19; 19) = 0:23 (Let us recall that this minimum is due to censoring
and to the restriction to one generation, which reduces the observation window
to 19 years).
As stated above, the empirical K is used, together with the theoretical ones,

in order to
a) select the � parameter value for each copula and
b) select the best �t copula.
At both stages we use the L2 norm, and then we check the result using the

sup norm.
For each copula, we choose as parameter estimate b� the one which makes

the corresponding theoretical K, K�b�
, the least distant from the empirical K,

bKn. The distance is �rst appreciated graphically, then computed by discretizing
the integral (15). The discretization has step 1/1000, the one of the empirical
K. The lower bound for the computation of the error is taken to be � = 0:231,
according to the criterion in section 3.2.
We therefore obtain a di¤erent theoretical K function for each copula, and

we are ready to compare them in order to assess their goodness of �t and to

3We checked the robustness of the procedure by changing the discretization step.
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select the best copula. The graphical comparison can be done using Figure 2,
where we present the theoretical K�s and the empirical one.

Comparison between empirical and theoretical K
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We also compute the distance of each theoretical function from the empirical
one, i.e. the minimized distance in (15). This gives the errors in Table 4.

Clayton Frank Gumbel 4.2.20 in Nelsen Special alfa

1.336382 3.095018 4.777058 0.720027337 0.8110124

Error (L
2
 -norm distance)

Table 4

Both from the graph and the errors we conclude that the best �t copula is
the 4.2.20 Nelsen one.
By inverting the parameter value of the Nelsen copula we also get an estimate

of Kendall�s tau, as explained under 3�) of section 3.2: this results in �̂ = 0:6039,
roughly in line with the values obtained, for the same Canadian set, but without
focusing on a generation, by other authors (Frees et al., 1996, Carriere, 2000,
Youn and Shemyakin, 1999, 2001, Shemyakin and Youn, 2001).
In the absence of a formal test for censored data (see Genest, Quessy, Rémil-

lard (2006)), we also check the correctness of the copula choice by repeating the
procedure - namely, points 1�) and 2�) above - with the sup norm: we again
obtain as best �t copula the Nelsen one.
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5.5 Omnibus procedure

As a further check of our selection, we implement the omnibus or pseudo-
maximum likelihood procedure. As inputs for it, we use again the rescaled
Kaplan-Meier marginal probabilities in Table 2. Table 5 presents the estimated
parameters �̂ for each copula, their standard errors and the maximized likelihood
function.

Copula Theta via omn. proc. Standard error Theta via W&W proc. Max-likelihood

Clayton 2.2325 0.3290 2.731165 -734.698

Frank 3.4892 0.4154 6.313338 -735.268

Gumbel 1.1292 0.0217 2.2612029 -750.297

4.2.20 Nelsen 1.0402 0.1427 1.004763 -734.573

Special 4.3734 0.42495 3.0966724 -740.396

Table 5

The likelihood is maximized in correspondence to the Nelsen copula: this
procedure then con�rms the results of the Wang and Wells one.
Also, the omnibus approach con�rms the validity of the Kendall�s tau esti-

mates obtained with the Wang and Wells� approach: using the above standard
errors, for each copula parameter - and consequently for the Kendall�s tau - we
computed a 95% con�dence interval around the maximum likelihood one. Both
the copula parameter and the Kendall�s tau of the Wang and Wells� method
fall in the 95% con�dence interval of the omnibus procedure estimate, if one
considers the Nelsen or Clayton copula. However, if one repeats the test using
the estimated parameters of the sup norm distance, he �nds that the Nelsen
and Special estimates from the Wang and Well�s methodology fall within the
maximum likelihood signi�cance bounds: therefore, the Nelsen is the only one
which passes the test for both norms.

5.6 The analytical marginal survival functions

The couples of the original Canadian data set have dates of birth between 1884
and 1993: in the papers which have dealt with it, the same law of mortality
is assumed to apply for all the individuals of the same gender. Generation
e¤ects are therefore neglected. On the contrary, in this paper we distinguish
di¤erent generation survival probabilities and intensity processes. We take as
a generation not a single age of birth, but thirteen consecutive of them: this
assumption is based on the one side on the possibilities of reliable calibration
(number of data) o¤ered by the present data set; on the other side, by the
fact that there is not a unique de�nition of generation, and, generally speaking,
persons with ages of birth close to each other can be considered to belong to
the same generation. It is evident however that the speci�c choice adopted here
is purely illustrative.
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We have chosen the generation 1907-20 for males, initial age 68, and 1910-
23 for females, initial age 65. We therefore present only two survival functions,
which will be denoted as Sm68(t); S

f
65(t) respectively. Their analytical expression

is given by (20). The corresponding parameters are estimated by minimizing
the mean square error between the Kaplan Meier and the analytical survival
functions, similarly to Luciano and Vigna (2005). The estimated parameters
are, respectively for males and females

a68 = 0:0810021; �68 = 0:00005; a65 = 0:124979; �65 = 0:00005

while the initial intensity values are4

�68(0) = 0:0204276; �65(0) = 0:0046943

The two survival functions are presented in Figure 3.
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4The values of �68(0) and �65(0), according to Luciano and Vigna (2005), should be
� ln(p68) and � ln(p65) respectively, with p68 being the survival probability of a Canadian
insured male born in 1920 and aged 68 and with p65 being the survival probability of a
Canadian insured female born in 1923 and aged 65. However, these data are not available.
Therefore, using the data set we have estimated with the Kaplan Meier method p68 males and
p65 females, without restrictions on the generation. This has been done in order to have an
estimate of those survival probabilities as accurate as possible (also considering the fact that
the observation period is only �ve years, and therefore the individuals entering the calculation
of the survival probabilities were born in a six years interval).
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6 The analytical joint survival function and its

time-dependent association

We couple the �tted marginal survival functions of Section 5.6 with the best �t
copula choice of Section 5.4, according to the formula

S(x; y) = C(Sm68(x); S
f
65(y))

and using the Nelsen�s copula:

C�(u; v) =
�
ln
�
exp(u��

�
+ exp(v��)� e)

�� 1
�

By doing so, we obtain the joint survival function S(x; y) of Figure 4, some of
whose sections are presented in Figures 5 and 6 respectively
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S(x,y), y fixed
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S(x,y), x fixed
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Figure 6

Looking at Figure 5, we notice that , if y is high, S(x; y) is almost �at until a
certain age bx after which it decreases. This is due to the fact that the probability
for the female of surviving y years, with high y, is very low: this a¤ects to a great
extent the joint probability of surviving x years for the male and y years for
the female (even when the probability S(x; 0) is very high because x is small).
After age bx the joint probability starts to decrease because of the joint e¤ect of
low probability of surviving y years for the female and x years for the male.

For Figure 6 the same comments made for Figure 5 apply. Notice that,
while the age bx after which S(x; y), y �xed, starts to decrease is always smaller
than the �xed value of y, here the age by after which S(x; y), x �xed, starts to
decrease is always higher than the �xed value of x. This is probably due to the
di¤erence in death rates for a male and a female with the same age. Evidence
of this can be also found in the di¤erent level of the sections when we change
sex: for instance, S(x; 35) lies at a higher level than S(35; y), S(x; 30) lies at a
higher level than S(30; y), etc.
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In Figure 7, we report the ratio between the joint survival function S(x; y) and
the probability which we would obtain under the assumption of independence,
namely the product copula one, S(x)S(y). In doing this, please notice that we

use the short notation Sm68(x) = S(x); Sf65(y) = S(y). Figure 7 therefore reports
the time dependent measure of association  1 (x; y) as de�ned in (2). The ratio
takes values greater than one, because of positive dependence, is monotone in
each argument, as expected from the copula selected, and reaches very large
values for large x and y.
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The sections of the dependence measure in Figure 7 are in Figures 8 and
9. All the curves start at 1 for x = 0 or y = 0 and increase monotonically
until a certain value, de�ned as x� in Figure 8 and y� in Figure 9, from which
they remain constant. The ratio of the conditional to unconditional survival
probability for men, given a female age, is then stable above x�, while the
corresponding ratio for women, given a male age, is stable over y�. Comparing
the sections of Figure 8 with those of Figure 9 for the same �xed value, we
observe that x� < y�. This is a distinctive feature of the mortality experienced
by males, compared to females, which the speci�c joint survival function permits
to highlight.
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S(x,y)/(S(x)S(y)), x fixed
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Starting from the previous age dependent association measure, we compute the
conditional survival probabilities resulting from our estimates, Sm68(x j y) and
S
f
65(y j x) respectively. For the sake of brevity, we denote them as Sm68(x j
y) = S(x j y); Sf65(y j x) = S(y j x) and present them in Figures 10 and 11
respectively. In Figure 10, for small values of y, S(xjy) approaches the marginal
distribution S(x), as expected . For high values of y the level of S(xjy) increases,
and is even equal to 1 for a considerable period of time, if y = 30; 35. This means
that the probability of surviving long for the male is actually one, given that
the female survives even longer. For Figure 11, similar comments apply. Here,
we notice that with high values of x, S(yjx) is 1 for durations longer than x.
Loosely speaking, the fact that the male survives x years seems to guarantee
that the female survives at least x years.
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S(x|y), y fixed
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S(y|x), x fixed
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As for the second measure of time-dependent association in Section 2, table 6
illustrates the measures  2x (0; y) and  2y (x; 0) as de�ned in equation (3). The

unconditional life expectancy E [Tmx ] and E
�
T fy
�
are respectively equal to 16:51

and 21:92. Column 2 displays the relative increase of the conditional expected
remaining lifetime of (x), given that (y) survives to y, with respect to E [Tmx ]:
as explained in Section 2, in correspondence to our copula, it increases as a
function of y. Similarly, column 4 shows the relative increase of the conditional
expected remaining lifetime of (y), given that (x) survives to x; with respect to
E
�
T fy
�
: it is increasing as a function of x; as expected. We observe that, for

x = y,  2x (0; y) <  2y (x; 0) for small values of x or y, but the inequality sign is
reversed for large values of this argument. Knowledge of the fact that the female
survives a given number of years a¤ects the remaining survivorship of the male
less than the opposite knowledge, for short maturities (1, 5, 10 respectively).
The opposite applies to long maturities (more than 10 years).
Even this second measure then gives us a very speci�c information on the

sample survivorship.

y E(T_x|T_y>y)/E(T_x) x E(T_y|T_x>x)/E(T_y)

1 1.002 1 1.006

5 1.015 5 1.028

10 1.044 10 1.056

15 1.097 15 1.089

20 1.199 20 1.130

25 1.381 25 1.175

30 1.632 30 1.219

Table 6

As for the third measure of time-dependent association in Section 2, the
cross-ratio function for the Nelsen copula, as a function of S (u; u), is

CR (S (u; u)) = 1 + �
�
1 + [S (u; u)]

��
�
;

As the previous measures, and as shown in Spreeuw (2006), it is increasing
as a function of age (u): di¤erently from the other measures however it does
not depend on the margins. Its measures the relative increase in the survivor
force of mortality. Figure 12 gives a plot of CR (v) versus 1 � v: notice that
CR (1) = 3:00953, CR (v) is increasing in 1� v (as expected from the previous
reasoning on u) and takes very large values for v close to 0.
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Figure 12

To sum up, for the sample at hand, since the Nelsen copula is the best �t
one, members of a couple become more dependent on each other as they age.
The measures just illustrated give di¤erent perspectives on this age dependency,
based respectively on conditional survival probabilities, expected lifetimes and
their conditional version, relative increase of the survivor mortality force, inde-
pendently of the marginal survival probability.

7 Conclusions

This paper represents a �rst attempt to model the mortality risk of couples of
individuals, according to the stochastic intensity approach.
On the theoretical side, we extend the Cox processes setup to couples, where

Cox processes are based on the idea that mortality is driven by a jump process
whose intensity is itself a stochastic process, proper of a particular generation
within a gender. The dependency between the survival times of members of
a couple is captured by a copula, which we assume to be of the Archimedean
class, as in the previous literature on bivariate mortality.
On the empirical side, we �t the joint survival function by calibrating sep-

arately the (analytical) margins and both calibrating and selecting the best �t
(analytical) copula. The calibration of the margins, due to the fact that the
individual intensity of mortality in stochastic intensity models is generation de-
pendent, must be performed on a given generation: as an example, we choose
two generations which are in their retirement age during the observation period.
First, we parametrize and select the best �t copula in a group of Archimedean

ones, according to the methodology of Wang and Wells (2000b) for censored
data. We obtain as best �t copula the so-called Nelsen one and we con�rm
its appropriateness with the pseudo maximum likelihood or omnibus procedure.
The best copula is far from representing independence: this con�rms both intu-
ition and the results of all the existing studies on the same data set. In addition,
since the best �t copula is the Nelsen one, dependency is increasing with age.
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Then, we provide a calibration of the marginal survival functions of males
and females. We select time-homogeneous, non mean-reverting, a¢ne processes
for the intensity and give the corresponding survival functions in analytical form.
Di¤erently from Luciano and Vigna (2005), we base the calibration on sample
insurance data and not on mortality tables.
Coupling the best �t calibrated copula with the calibrated margins we obtain

a joint survival function which is fully analytical and therefore can be extended,
for the chosen generation, to durations longer than the observation period. This
permits to compute time dependent association measures.
The main contribution of the paper is in the selection of a joint survival

function which incorporates stochastic future mortality for both individuals in
a couple, and which is analytically tractable. The approach seems to be man-
ageable and �exible, and lends itself to extensive applications for pricing and
reserving purposes. These are in the agenda for future research.
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