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Introduction 
 

Institutional investors diversify their portfolios by investing in public real estate. This practice is supported 

by empirical studies indicating that the risk-return tradeoff of optimal portfolios that include real estate 

improves relative to portfolios that include only standard financial asset classes such as stocks and bonds. 

However, such evidence mostly refers to in-sample evaluation of portfolio performance, which assumes 

that portfolio managers know the return distribution far better than they do in the real world. The first goal 

of this paper is to assess whether public real estate improves portfolio performance out-of-sample, 

realistically assuming that the portfolio manager chooses asset allocation for the future on the basis only of 

past information on realized returns, which can be at best recursively updated. 

 

Another feature of existing studies of public real estate is their reliance on a one-period mean-variance 

approach, which allows for a reduction in portfolio risks arising only from an imperfect (i.e., low, possibly 

negative) contemporaneous correlation of asset returns. Thus, real estate becomes more desirable if its 

return tends to increase or remain stable at the time that returns on other assets fall. This allows for static, 

across-asset (contemporaneous) diversification. However, a considerable reduction in risk to long-horizon 

investors may derive from time diversification that exploits non-zero intertemporal return correlations 

associated with complicated predictability patterns that rely on the linear association between news (shocks) 

to returns and predictor variables. Real estate may thus become more desirable if its returns are negatively 

autocorrelated in time, ensuring that times of higher returns will follow times of lower returns. While it 

could be especially important for pension funds and other long horizon investors, time diversification has 

been mostly investigated in asset menus without real estate (e.g., Campbell, Chan and Viceira [2003]). 

Since the effects of predictability on multi-period volatility obviously depend on the specific asset menu 

under examination (see Campbell and Viceira [2005]), our second – and perhaps most important – goal is 

to assess whether there is scope for time diversification of risk when public real estate is explicitly added to 

standard asset menus composed of stocks, bonds and bills. 

 

Importantly, our paper investigates the presence of ex post gains from time diversification. Even with 

modest statistical evidence in favour of predictability, such gains can be substantial when changes in 
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portfolio performance are measured “in sample”, i.e., assuming that a given statistical framework of 

analysis correctly measures the important features of the distribution of asset returns. For instance, 

Hoevenaars et al. [2007] and Fugazza, Guidolin, and Nicodano [2007] argue that expanding the asset menu 

to include public real estate, while accounting for predictable asset returns, may significantly increase the ex 

ante welfare of an investor maximizing expected utility. However, these findings are retrospective in 

nature. We therefore compute ex post gains, mimicking a risk-averse investor who relies on past evidence 

concerning return predictability in order to decide on future multi-period asset allocation. 

 

This experiment would be of negligible interest if it considered only one specific sample period, as the 

outcome could be due to bad or good luck. Hence, we average portfolio performance attained over 120 

simulated portfolio allocations obtained with the following recursive method. We first use data from 

January 1972 through December 1994 to estimate the parameters of our prediction model and to forecast 

multi-period means, variances, and covariances of returns on all asset classes, which enable us to determine 

optimal portfolio weights. This exercise is repeated the following month, using data up to January 1995 to 

compute fresh forecasts of return moments and to select portfolio weights. Iterating this recursive scheme 

through November 2004 generates a sequence of realized portfolio returns from which ex post performance 

measures of optimal portfolios are computed. Our evaluation of the role of real estate when returns are 

predictable thus averages times of good and bad performance for this as well as other asset classes. This 

experiment is repeated for six alternative investment horizons, ranging from one month to 5 years. 

Moreover, we allow not only for the standard classical approach, but also for a Bayesian approach (as in 

Barberis [2000]) in computing optimal portfolio composition. Indeed, welfare can substantially increase if 

the investor takes into account the uncertainty in forecasts by using Bayesian updating (Jorion [1985] and 

Kandel and Stambaugh [1996]), especially when return predictability appears weak according to statistical 

tests.1 

 

We use a simple vector autoregressive framework to capture predictable variations in the investment 

opportunity set (as in Campbell, Chan, and Viceira [2003], Geltner and Mei [1995], and Glascock, Lu, and 
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So [2001]) and solve a portfolio problem in which investors’ preferences are specified as a power utility of 

terminal wealth. In most cases, the optimal average weight to be assigned to real estate vehicles (equity 

REITs) is large for a 1-month investor, given a high ratio of expected return to volatility. As the horizon 

grows, the attractiveness of stocks and real estate improves relative to cash for classical investors, given 

their favorable multi-period time diversification properties implied by predictability. However, in a 

Bayesian framework parameter uncertainty is so high that it reverses this pattern, echoing results in 

Barberis [2000]. The optimal share invested in REITs by a Bayesian investor falls from 43% for a 1-month 

horizon to 33% for a five-year horizon, while the optimal average allocation to short-term T-Bills grows 

from 21% to 50%, because their return is precisely anticipated by several predictors. The optimal average 

allocation to bonds drops from more than 25% for a short horizon to almost zero for a five-year horizon. 

This result is similar to findings in previous experiments using different frequencies, asset menus, and 

estimation methods (see Campbell and Viceira [2005]). These changes in portfolio composition indicate 

that return predictability patterns suggest that a multi-period strategy should optimally exploit not only 

contemporaneous diversification but time diversification of risk as well. 

 

Ex ante, an investor with a multi-period horizon would always be at least as well off as a 1=T  investor, 

because she can always choose to overlook predictability and the opportunities for time diversification. 

However, ex post, the difference in realized expected utility could be negative – for instance, because the 

prediction model is misspecified and mis-predicts the auto and serial cross-correlations that characterize 

asset returns. We therefore measure the differential ex post performance of a one-month versus a five-year 

investor to assess whether there are gains from intertemporal hedging brought about by return 

predictability. Our results contribute more evidence to the skeptical view on the ex post value of 

predictability (e.g., Goyal and Welch [2004]) within linear frameworks, in that the out-of-sample average 

Sharpe ratio of a long-horizon portfolio is often lower than that of a one-period investor. For instance, it 

drops from 0.45 for a 1=T  horizon to 0.30 for a 60=T  horizon when a Bayesian investor uses an asset 

menu that includes real estate. Similar results are obtained for horizons shorter than 60 months, as well as 

for the asset menu without real estate. One may argue that the Sharpe ratio, which is based on the mean and 
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variance of returns only, can be a misleading indicator of performance when returns are not normally 

distributed (see Leland [1999] and Goetzman et al. [2002, 2004]).2 For this reason, we also study the ex 

post welfare gains from time diversification that arise from changes in the skewness and higher order 

moments of wealth. Results based on welfare gains confirm, however, the results based on Sharpe ratios. 

The average certainty equivalent of welfare for a Bayesian investor drops from 8.75% to 6.77% when the 

horizon grows to five years. 

 

On the contrary, contemporaneous diversification into real estate vehicles increases both the Sharpe ratio 

and the certainty equivalent of wealth for all investment horizons and for both Bayesian and classical 

investors. These results extend to an ex post setting the evidence in Fugazza, Guidolin, and Nicodano 

[2007] concerning European data and ex ante performances, as well as results obtained in mean-variance 

models (see Seiler, Webb, and Myer [1999] and Feldman [2003]).3 The annualized percentage increase in 

initial wealth that should be awarded to a Bayesian investor in order to compensate her for excluding REITs 

from her asset menu ranges from 1.39 to 2.59 percent of initial wealth, depending on her horizon. Ex post 

welfare gains are even larger, apart from the 1-month horizon case, for a classical investor who overlooks 

estimation risk when choosing portfolio composition. 

 

Several recent papers have explored whether predictability improves the ex post performance for an 

investor with a one period horizon, who therefore exploits only market timing (when predictability is 

modeled) and contemporaneous diversification opportunities. Returns to market timing appear to be 

positive for a Bayesian investor in a mean variance framework (Avramov and Chordia [2006], Abhyankar, 

Basu, and Stremme [2005], and Wachter and Warusawitharana [2005]) even though they can turn negative 

when an investor tries to guess ex ante which are the best predictors for returns (Cooper, Gutierrez, and 

Marcum [2005]). Other papers also analyze out-of-sample performance of investment in public real estate 

with predictable returns. Some find that active strategies outperform passive ones (Liu and Mei [1994]), 

even after deducting transaction costs (Bharati and Gupta [1992]). This is no longer the case in more recent 

studies, such as Nelling and Gyourko [1996] and Ling, Naranjo, and Ryngaert [2000], who find it difficult 
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to exploit predictability ex post particularly in the 1990s. While these studies focus on short term portfolio 

strategies, our paper completes the picture by investigating the ex post welfare gains of time diversification 

in a multi-period setting. We find that ex post economic value of time diversification is negligible before 

accounting for transaction costs, even if linear prediction performs reasonably well. However, the 

contemporaneous diversification opportunities offered by real estate vehicles remain substantial and likely 

in excess of most sensible measures of transaction costs. 

 

The plan of the paper is as follows. The next section briefly outlines the methodology of the paper. 

Following that we describe the data and report results on the statistical properties of the relevant variables, 

revealing predictability in the dynamics of the investment opportunity set. We then characterize optimal 

portfolios that include real estate, comparing them to the case without real estate, and assess the gains from 

intertemporal risk diversification. In the following section we calculate the welfare costs of ignoring either 

predictability or real estate. Our final section concludes, and an appendix presents details on the statistical 

models and solution methods employed in the paper. 

 

The Asset Allocation Model 

In this paper we compute forecasts of the basic sample moments relevant to portfolio choice and, as a result, 

optimal portfolio shares using both classical and Bayesian econometric approaches. In the classical case we 

estimate the parameters characterizing a set of simultaneous linear relationships that link returns to the 

predictors. We then use the current realization of the predictors to compute conditional (predictive) 

moments and distributions for future asset returns that take the estimated parameter values as given and use 

them in place of the true (but unknown) parameter values. Since the expected utility maximization that 

describes the portfolio problem is solved using predictive densities that ignore the fact that the parameter 

estimators are themselves random variables, an important source of uncertainty (sometimes called 

estimation risk) is ignored. Such an approach is called classical, and is typical in the literature (see e.g., 

Barberis [2000]). In the Bayesian case we specify a (weak, uninformative) set of beliefs concerning the 

parameters characterizing the linear relationships among asset returns and predictors that the investor might 
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have prior to viewing the data. A posterior distribution of such parameters is then obtained, by Bayes' rule, 

conditional on the observation of the predictors, and this posterior distribution is used to generate a 

conditional, predictive distribution of returns and, as a result, a predictive distribution of future utility 

levels. By maximizing the expectation of such predictive utility density by selecting portfolio shares, the 

optimal asset allocation is computed and characterized. The next two subsections provide a few additional 

details on the asset allocation frameworks employed in this paper, while the appendix gives a primer on the 

two asset allocation frameworks employed. 

Classical Portfolio Choice 

Consider an investor with constant relative risk aversion, 1>γ , who maximizes the expected utility derived 

from her final wealth, accumulated afterT months, by choosing a vector of optimal portfolio weights at time 

t  ( tω ), 
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Call n  the number of asset classes included in the asset menu. Our baseline experiment concerns .4=n  If 

there are no-short sale constraints, the problem can be stated as: 

{ }
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Time variation in (excess) returns is modeled using a simple Gaussian VAR(1) framework, as in most of 

the finance literature on time-varying investment opportunities (see the review in Campbell and Viceira 

[2003]): 

,1 ttt εΦ+µ += −zz              (2) 
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tx  and tx  represents a vector of economic variables able 

to forecast future asset returns. Equation (2) implies that  
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i.e. the conditional risk premia on the assets are time-varying and functions of past excess asset returns, past 

short-term interest rates, and lagged values of the predictor variable 1−tx . The appendix provides further 

details on the characterization of the joint predictive density for asset returns in this case. 

 

This problem can be solved by employing simulation methods similar to Kandel and Stambaugh [1996], 

Barberis [2000], and Guidolin and Timmermann [2005]: 
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, } =  are obtained by simulating the process in (2) N  times. To obtain the 

results that follow, we have employed 000,100=N  Monte Carlo trials in order to minimize any residual 

random errors in optimal weights induced by simulations. 

 

Bayesian Portfolio Choice 

We incorporate estimation risk in the model by using a Bayesian approach as in Barberis [2000]. This relies 

on the principle that portfolio choice ought to be based on the multivariate predictive distribution of future 
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asset returns that also “integrates over” (i.e., accounts for) the fact that estimated coefficients within the 

simple VAR framework in (2) do possess a distribution because they are just sample statistics.4 Such a 

predictive distribution is obtained by integrating the joint distribution of θ  and returns )|,( , tTtp Zz &&θ  with 

respect to the posterior distribution of θ  , )|( tp Z&&θ : 

,)|(),|()|,()( ,,, θθθ=θθ dppdpp ttTttTtTt ZZzZzz &&&&&& ∫∫=  

where tZ&&  collects the time series of observed values for asset returns and the predictor, .}{ 1

t

iit =≡ zZ&&  The 

portfolio optimization problem becomes then: 
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In this case, Monte Carlo methods require drawing a large number of times from )( ,Ttp z and then 

“extracting” cumulative returns from the resulting vector. The appendix provides further details on methods 

and on the Bayesian prior densities, which we simply assume to be of a standard uninformative diffuse 

type.5 In particular, since applying Monte Carlo methods implies a double simulation scheme (i.e., one pass 

to characterize the predictive density of returns, and a second pass to solve the portfolio choice problem), in 

the following N  is set to a relatively large value of 300,000 independent trials that are intended to 

approximate the joint predictive density of excess returns and predictors. 

 

Data and Descriptive Statistics 

Our sample of monthly data begins in January 1972 and extends through November 2004 for a total of 395 

observations. Importantly, the sample period includes several stock market cycles. The NAREIT website 

(www.reit.com) provides monthly returns for U.S. REITs as measured by the FTSE NAREIT US Equity 

REIT Index. Stock returns are derived from the value weighted CRSP index of listings on the NYSE, 

NASDAQ and the AMEX. The 10-year constant maturity portfolio returns on US government bonds as 

well as the 3-month T-bill come from the Federal Reserve Bank of St. Louis database (FREDII®). We use 

continuously compounded total return market-capitalization indices, including both capital gains and 
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income return components. Excess returns are calculated by deducting short-term cash returns from total 

returns. The short-term investment yield is expressed in real terms as the difference between the nominal 

yield and the seasonally-adjusted monthly rate of change in the consumer price index for urban consumers 

provided by FREDII®. 

 

As for the choice of economic predictors, we follow Ling, Naranjo and Ryngaert [2000] by using the 

dividend yield computed on the CRSP index, the term and default spreads, and the realized inflation rate as 

predictors of asset returns.6 The dividend yield is computed as the ratio between the moving average of cash 

dividends paid out by companies in the CRSP universe during the previous 12 months divided by the value-

weighted CRSP price index at 12−t . The term spread is the difference between the yield on a portfolio of 

long-term US government bonds (10-year benchmark maturity) and the yield on 3-month Treasury bills; 

both series are downloaded from the FREDII® database and both yield series are annualized. The default 

spread is measured as the yield difference between BAA corporate bonds and the 10-year constant-maturity 

Treasury bond yield series, both from FREDII® and annualized.7 Since much literature has documented a 

relationship between real estate returns and the rate of inflation (see e.g., Karolyi and Sanders [1998]), we 

also augment the space of predictor variables by the inflation rate, measured as the continuously 

compounded rate of change of the consumer price index for all urban consumers (all items, seasonally 

adjusted, again from FREDII®). Finally, the VAR(1) model implies by construction that past asset returns 

forecast future returns as well as the future values of the four predictors. 

 

In Table 1 we present summary statistics for the eight time series under investigation. (In fact, to support 

interpretations that are offered below, the table presents nine different series because it covers both nominal 

and real short-term interest rates.) Panel A of Table 1 refers to our complete sample period (1972-2004), 

while Panel B concerns the sample used for estimating the initial parameters of the linear predictability 

model (1972-1994), with the purpose of initializing our recursive scheme of estimation, portfolio 

optimization, and ex post realized performance evaluation. 

 

Over the complete sample, securitized real estate dominates (in mean-variance terms) the stock market, in 
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spite of the stock market boom that characterized the mid and late 1990s. Public real estate performs better 

than equities in mean terms (6.0 and 4.0 percent in annualized terms and in excess of short-term yields, 

respectively), and is less volatile than stocks (annualized standard deviations are 13.8 and 16.1 percent for 

REITs and equities, respectively). Correspondingly, the Sharpe ratio of real estate (4.32) is almost twice the 

ratio for equities (2.49). As one would expect, bonds have been less profitable (1.5 percent per year in 

excess of short-term yield) but also less volatile (7.8 percent in annualized terms) than stocks and real 

estate. The corresponding Sharpe ratio is, however, rather low, only 1.87. In real terms, short-term T-bills 

have given a non-negligible average yield of 1.9 percent per year with a very small annualized volatility of 

1.2 percent only, as one would expect. 

 

The lower part of Panel A displays contemporaneous correlations. The performances of the four asset 

classes are only weakly correlated, with a peak correlation coefficient of 0.57 between excess stock and real 

estate returns. Excess bond returns are characterized by correlations against both equities and real estate that 

are less than 0.2. Under these conditions, there is wide scope for contemporaneous portfolio diversification 

across risky assets. Even lower is the correlation of the real return on T-bills with stocks and equity REITs, 

which never exceeds 0.12: therefore we expect a relatively large demand for T-bills for hedging purposes. 

 

Panel B shows summary statistics for the shorter 1972-1994 sample period used to initialize our recursive 

portfolio experiments. We briefly discuss the features of our data series also as a means to document the 

robustness (stationarity) over time of the main statistical features discussed above. The subsample 1972-

1994 is qualitatively similar to the full sample, although investment opportunities during the 1970s and 

1980s turned out to be significantly worse than in the 1990s and the following half decade. For instance, 

Sharpe ratios are lower (from 0.88 for bonds to 3.19 for public real estate) and all correlations increase 

when compared to our full-sample period. This is because the first few years (1972-1976), which are more 

heavily weighted in this shorter sample, are characterized by a well-known, supply-side induced recession 

that caused (ex post) Sharpe ratios to turn negative for both stocks and equity REITs. However, it is 

remarkable that the mean, volatility, and Sharpe ratios ranking across risky assets is entirely the same as in 
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panel A: as during our initial sample, public real estate gave a considerably higher mean excess return than 

equities (in fact, almost double, 4.5 vs. 2.7 percent per year), a somewhat lower standard deviation (14.1 vs. 

16.0 percent), and a more appealing reward-to-risk ratio. Correlations are generally similar to those reported 

in Panel A. 

 

Predictability Patterns in a VAR Model 

Table 2 reports estimates of the VAR coefficients in Equation (2), for the case in which classical estimation 

methods are employed over our complete sample. Robust t-statistics are reported in parentheses, under the 

corresponding point estimates. We highlight p-values equal to or less than 0.05. The lower part of the table 

displays MLE estimates of the covariance matrix of the VAR residuals. The table shows that a number of 

variables are able to predict future real estate performance.8 Real estate returns are positively related to 

lagged stock and bond returns with positive and significant coefficients, as if wealth effects from financial 

securities were able systematically to spill over to the real estate market. REITs returns are negatively 

related to both the lagged term spread and the short term real rate, with coefficients that are large and 

economically meaningful ( 81.5−  and 67.4−  imply that a one standard deviation shock to either the term 

spread or the real short rate will induce changes of 1.01 and 1.71 percent in monthly REIT returns). We also 

find evidence of forecasting power of both the dividend yield and inflation for real estate returns, and in this 

case the effects are not only statistically significant, but economically important as well (i.e., a one standard 

deviation shock to the dividend yield forecasts a change of REITs returns of 1.17 percent in the same 

direction, while an identical shock to the inflation rate predicts a REIT return change of 2.16 percent in the 

opposite direction). Interestingly, higher current inflation forecasts lower future public real estate returns, 

which is a finding similar to the one typical in the equity literature. 

 

The degree of predictability characterizing stocks is similar to the one found for REITs. The only difference 

is that in the case of equities lagged asset returns have no forecasting power, while the coefficients 

characterizing all the relevant predictors (dividend yield, term spread, real short term rates, and inflation) 

turn out, remarkably, to be larger than in the REIT case. For instance, while a one standard deviation shock 
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to the dividend yield was predicting a 1.17 percent increase in REIT returns, the matching prediction for 

equities is 1.73 percent in the case of equities. The signs of all these effects are completely consistent with 

the literature as far as the dividend yield (Barberis [2000]), the term spread (Avramov [2002]), and the 

effects of real short term rates (Keim and Stambaugh [1986]). The largest economic difference concerns the 

effect of shocks to the term spread, as the estimated coefficient for equities is almost double the estimated 

effect for public real estate. These results seem to validate the view that public real estate may be just a 

special type (sectorally characterized) of equity security. Bond returns are instead scarcely predictable, in 

the sense that only the dividend yield, the default spread, and inflation seem to have a marginally significant 

predictive power. Only the economic importance of the default spread, however, is non-negligible in the 

sense that a one standard deviation shock to the default spread triggers a 0.34 percent reaction in bond 

returns. 

 

Interestingly, real one-month T-bill returns are precisely predicted by all predictors as well as by lagged 

bond and REIT returns. Additionally, as one should expect in the light of the finance literature debating 

whether short-term rates contain a unit root, real one-month T-bill returns contain also a substantial degree 

of persistence. (The coefficient is in fact in excess of unity, although this has no implications for stationarity 

as the entire vector autoregressive system does turn out to be stationary.)9 We also note that the dividend 

yield, the term spread, and inflation predict subsequent real short term rates with highly accurate but rather 

small coefficients (which do imply weak economic significance), but also with signs that are systematically 

opposite those found in the case of public real estate and stocks. These are the same patterns documented by 

Campbell, Chan and Viceira [2003]. In particular, while past inflation is negatively correlated with future 

stock, bond and real estate returns with estimated VAR(1) coefficients of -9.5, -2.4, and -6.3, the only 

predictive influence that links an increase in a rate of return with higher inflation concerns 1-month T-bills. 

This implies that short-term, essentially default risk-free investments are the only ones that provide a hedge 

against inflation shocks. 

 

The lower panel of Table 2 shows the volatilities of the VAR residuals on the main diagonal, pair-wise 
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covariances below the main diagonal, and pair-wise correlations above the main diagonal. As argued in 

Barberis [2000], such pair-wise shock correlations are crucial because the behavior of the variance of 

portfolio returns depends on them as the investment horizon grows. For instance, even focusing on the 

simple case of one risky asset with nominal return  Rt1   (and excess return  r t1  Rt1  r f
 ) predicted by 

a variable  x t,   it is clear that a VAR(1) framework implies that while  Var tRt,1  Var tRt1  2,   

with a two-period investment horizon: 
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where 12φ  is the VAR coefficient that measures the effect of tx  on ,1+tr
2

xσ  is the variance of the shocks to 

the predictor, and ρ  is the correlation between shocks to the predictor and shocks to excess returns. It is 

now easy to show that the conditional variance of the asset return grows at a slower rate than the horizon if 

and only if ,02)( 12

22

12 <+ xx ρσσφσφ  which may occur if and only if ρ  and 12φ  have opposite signs. This 

result makes the sign of the correlation between VAR shocks crucial, given .12φ When 

][/][ 1,, ttTtt RVarRVar  declines as the horizon T  grows and ,012 >φ  the economic interpretation is that 

when the predictor falls unexpectedly (i.e. it is hit by some adverse shock), 0<ρ  implies that the news will 

likely be accompanied by a positive contemporaneous shock to excess asset returns. On the other hand, 

since ,012 >φ  a currently declining dividend yield forecasts future lower risk premia on stocks and real 

estate. Hence such a parameter configuration leads to a built-in element of negative serial correlation, as it 

is easy to show that processes characterized by negative serial correlations are less volatile in the long run 

than in the short run, due to mean-reversion effects.10 

 

The lower panel of Table 2 does highlight a few large and negative pair-wise correlations between excess 

asset returns and predictors. This happens between excess stock returns and the dividend yield (-0.89), 
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between REIT returns and the dividend yield (-0.56), and between the real short term rate and the term 

spread (-0.44). Since the predictive relationship between these three couples is always positive, such 

negative correlations imply an element of mean reversion that can make stocks, REITs, and short-term T-

bills increasingly attractive as the investment horizon grows. Such findings are ubiquitous in the literature 

analyzing US equity data (see e.g., Barberis [2000]), implying that stocks and real estate are a good hedge 

against adverse future dividend yield news. Fugazza, Guidolin, and Nicodano [2007] find an identical result 

on European real estate data. However, a few correlation coefficients are always positive and highly 

significant, especially between stock and REIT residuals. This means that unexplained (residual) returns in 

both stocks and public real estate will tend to appear together and this makes both real estate and equities 

riskier than they would otherwise be. Clearly, at an empirical level it remains unclear which of the two 

effects – the mean reversion implied by the negative correlation between dividend yield and return news, or 

the mean aversion implied by the positive correlation between real estate and equity return news – will 

prevail. 

 

Additionally, REITs do not appear to be good hedges against news affecting bond returns, inflation and the 

real short-term rate. Consider for instance an inflationary surprise. This will be associated with lower 

contemporaneous returns on REITs, since the correlation coefficient is equal to -0.13. In turn, lower 

inflation predicts lower expected real estate risk premia, since the VAR coefficient is equal to 0.23. Thus, 

lower returns associated with inflationary surprises will tend to persist, making REITs relatively riskier in 

this respect. On the contrary, stocks are good hedges with respect to shocks to the term spread and to the 

real short rate. Thus, stock returns become relatively less risky than REITs return over a longer horizon. 

 

One final remark about the lower panel of Table 2 concerns the behavior of the risk of the real short term 

rate as the investment horizon grows. On the one hand, the standard deviation of the short term real rate is 

unconditionally very low, as displayed in Table 1, a tiny 1.22 percent per year. On the other hand, this asset 

becomes even less risky over a longer horizon. Indeed, its VAR residuals display negative 

contemporaneous correlation with innovations to both the term spread (-0.44) and the inflation rate (-0.87), 

which help in predicting future short term real return with a positive coefficient (1.17 and 0.95, 
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respectively). Thus, an inflationary surprise, while decreasing the contemporaneous return to short term 

assets, is expected to be associated with higher future real short term rates.11 Of course, these heuristic 

arguments concerning the behavior of the variance of the different asset classes as a function of the horizon 

hardly map in precise quantitative results on optimal portfolio choices as a function of the horizon. Below, 

we will see how these features have implications for multi-period portfolio choice. 

 

All in all, the classical results in Table 2 reveal the presence of a considerable degree of predictability of 

non-negligible strength, even when a rather rudimentary VAR(1) model is used to capture predictability in 

asset risk premia. However, since the seminal paper by Jorion [1985], it is well known that ex post 

performance may improve significantly when Bayesian estimation techniques – which are able to model 

and quantify the estimation risk implicit in a given econometric model – are deployed to support optimal 

portfolio choice. For this reason we repeat the econometric analysis employing Bayesian estimation 

methods to derive the joint posterior density for the unknown parameters and hence the joint predictive 

density of asset returns that allows us to compute optimal portfolio choices. Table 3 reports the means of 

the marginal posteriors of each of the coefficients in predictive coefficient matrix C  (further defined in the 

appendix) along with the standard deviation of the corresponding marginal posterior, which provides a 

measure of the uncertainty involved. 

 

The posterior means in Table 3 only marginally depart from the MLE point estimates in Table 2, a fact 

which is consistent with previous findings in the financial econometrics literature on return predictability. 

However, the additional variance of the coefficients caused by the presence of estimation uncertainty 

reduces our empirical ability to accurately predict bond returns and, to a lesser extent, real estate returns, as 

in Avramov [2002]. For completeness, we also report in the last panel of Table 3 the posterior means and 

standard deviations (in parentheses) for the covariance matrix Σ . Most elements of Σ  have very tight 

posteriors and all the implied correlations are identical (to the second decimal) to those found under MLE. 

Therefore similar comments about the economic meaning and implications of the econometric estimates 

also apply to the Bayesian results in Table 3. 
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Optimal, Real-Time Portfolio Choice 

The main exercise of this paper consists of a fully recursive scheme of model estimation and optimal 

portfolio optimization. In particular, we initialize our experiment using data from January 1972 up to 

December 1994 to estimate the parameters of our VAR(1) prediction model and to forecast multi-period 

means, variances, and covariances of returns on all asset classes, enabling us to determine optimal portfolio 

weights in a classical framework. We also proceed to numerically characterize the Bayesian joint posterior 

densities (see the appendix for details) for the coefficients in C  and Σ  and the joint predictive density for 

future asset returns. We then compute optimal portfolio weights both in the classical framework that ignores 

estimation risk and in the Bayesian one. This is done by imputing to our hypothetical investor a range of 

alternative potential investment horizons parameterized by ;T  in fact we use six alternative horizons, 

ranging from 1 month to 5 years.12 These recursive estimation and portfolio choice exercises are repeated 

on the following month, using data from January 1972 and up to January 1995 to compute afresh forecasts 

of return moments and Bayesian joint predictive densities and to select (ex ante) optimal portfolio weights. 

Iterating this recursive scheme until November 2004 generates a sequence of 120 sets of optimal portfolio 

shares – importantly, one for each possible investment horizon – as well as realized portfolio returns from 

such ex ante optimal choices, from which ex post performance measures for these alternative portfolio 

strategies and horizons may be computed. 

 

Portfolio Diversification 

Table 4 reports the optimal mean portfolio weights over the full sample period 1972-2004 for alternative 

investment horizons. Although tracking the dynamics of the weights over time may have some interest, in 

this paper we are mostly interested in the ex post performance of optimal portfolios and therefore purely 

concentrate on the “average” picture concerning the behavior of the investor. We focus first on the effects 

on portfolio composition from enlarging the asset menu to REITs, for a one-month investor. When 

securitized real estate is exogenously ruled out from the asset menu, a short-term investor who ignores 

estimation risk overweighs 10-year Treasury bonds (43%) and stocks (38%) and underweighs cash (19%) 
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relative to an equally weighted portfolio. The monthly Sharpe ratio of stocks and bonds is indeed 

considerable over both the initial sample (0.05 and 0.03) and the full sample (0.07 and 0.05), and the 

correlation between these two assets fluctuates in a rather moderate range of values from 0.31 to 0.18. The 

fact that an investor would underweight cash is further rationalized by the observation that its real return is 

positively correlated with excess stock and bond returns. 

 

When REITs are re-introduced in the asset menu, public real estate ends up crowding out the other risky 

assets due to its very high Sharpe ratio (0.13 in the full sample and 0.09 in the initial one) along with its 

relatively low correlation with short-term bills.13 The share destined to stocks is particularly moderated by 

the introduction of real estate (from 38% to 13%), given the relatively high correlation between equity and 

real estate returns and the size of the portfolio share optimally allocated to real estate (50%). Bond holdings 

fall from 43% to 27%, while cash falls from 19% to 10%. Therefore the displacement effect caused by 

public real estate on the average holdings of other assets over time is rather substantial. 

 

A Bayesian investor, by considering estimation risk, turns out to be more cautious, with lower holdings of 

all risky assets (especially REITs, down to 43%), compensated by larger holdings of cash (21%). However, 

the tendency to overweight real estate optimally relative to the equally weighted portfolio remains of first-

order magnitude. 

 

Interestingly, as the investment horizon grows, in the asset menu that includes public real estate, the 

reaction of the REITs weight becomes entirely a function of whether the investor employs or does not 

employ a Bayesian estimation framework. A Bayesian investor would allocate a steeply declining weight to 

real estate (and, but only marginally, to bonds) as the horizon grows, with the shares of stocks and 

especially short-term deposits strongly increasing. For instance, a 5-year Bayesian investor would invest 

33% in real estate (down from 43% for 1=T  month), 52% in cash (up from 21%), and 14% in stocks (up 

from 11%). This makes sense if assets imply an increasing/decreasing quantity of cumulative 

(“compounded”) estimation risk as the investment horizon changes. In contrast, a classical investor would 

increase the share invested in public real estate (from 50% to 59%) and stocks (from 13% to 29%), and 
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reduce the share of bonds to essentially nothing as the horizon increases. As a result, a classical long-run 

investor ends up choosing a portfolio that is considerably riskier than both a short- or long-run Bayesian 

investor who is concerned not only with the intrinsic risk of the assets, but also with estimation risk. These 

results generally agree with typical results in both finance (see e.g., Barberis [2000]) and real estate (see 

e.g., Fugazza, Guidolin, and Nicodano [2007]). These wide differences between short- and long-run 

portfolios lead us to offer a few additional thoughts on opportunities of diversification over time offered by 

real estate investments. 

 

Time Diversification 

It is well known that a one-period asset allocation may differ substantially from a long-term one when 

returns are predictable, while the investor's planning horizon is irrelevant for portfolio choice when returns 

are independently and identically distributed (Samuelson [1969], Merton [1969]). For instance, mean 

reversion in asset returns will lead to a positive intertemporal hedging demand in a multi-period dynamic 

setting, to be added to the speculative demand. The impact of time diversification on the allocation can 

therefore be gauged by comparing the allocation for 1=T  with the ones for longer horizons, in our case 

60=T . Here we consider an investor who ignores parameter uncertainty.14 

 

The percentages invested in bonds are %27  vs. %2 , %13  vs. %19  for stocks, %50  vs. %54  for real 

estate and %10  vs. %25  for cash. Overall, real estate and stocks – the riskier assets – account for %73  of 

a classical long-term portfolio versus an already surprising %63  for a short-term portfolio. Thus 

predictability implies a shift out of bonds by %25 , and into stocks (+ %6 ), real estate (+ %4 ), and short 

term deposits ( %15+ ). 

 

Clearly, the assets whose long-run risk/return tradeoff is most improved by the mean-reversion effects 

implied by the VAR(1) model are in lower demand for a short horizon than for a longer horizon. 

Unreported simulations reveal that conditional variances of bond returns increase when accounting for 

predictability. This occurs because shocks to bond returns are positively correlated with shocks to the 

default spread ( 35.0 ), which helps in predicting future bond returns with a large coefficient ( 05.7 ). Thus 
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an unexpected reduction in the default premium is associated with both lower unexpected bond returns 

today and lower expected bond returns tomorrow, a fact that makes a two-period bond portfolio riskier than 

in the absence of such intertemporal links. On the contrary, short-term deposits become less risky over 

multi-period horizons because their return is negatively correlated with contemporaneous surprises to both 

the term spread (- 44.0 ) and the inflation rate (- )87.0 , which help in predicting future short-term real return 

with a positive coefficient ( 17.1  and 95.0 , respectively). 

 

Due to its high persistence coupled with the strong negative correlation between shocks to returns and 

shocks to the dividend yield, Campbell, Chan, and Viceira [2003] find that the dividend yield generates a 

very large intertemporal hedging demand for stocks. Here, this effect is reinforced by the intertemporal link 

between stock returns on the one side and the term spread and the real short term rate on the other. The 

dividend yield also exerts a smoothing effect on multi-period REITs returns. However, this is 

counterbalanced by the impact of stock and bond returns, inflation and the real short-term rate, whose 

shocks are positively correlated with real estate shocks. This explains why the demand for public real estate 

does not increase as sharply as that for stocks as a function of the investment horizon. 

 

Interestingly, a classical investor ignoring real estate would reduce the share of bonds by 33% anyway, 

while increasing the demand of stocks and cash by 9% and 24% respectively. It thus appears that the 

predictability patterns induced by real estate leave almost unaltered the percentage decrease in cash, while 

exacerbating the fall in bond holdings. 

 

Diversification and Parameter Uncertainty 

Estimation risk influences portfolio choice in two ways. Important modifications occur in the structure of 

the investment schedules as a function of the horizon. When parameter uncertainty is taken into account, the 

average holdings of real estate and equity respectively become decreasing and flatter in T, resulting in lower 

investment in riskier assets. A classical investor, however, chooses average weights for riskier assets 

increasing in the investment horizon. For instance, the allocation to real estate decreases from 43% at a 1-
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month horizon to 33% at a 5-year horizon, while the allocation to stocks marginally increases from 11% to 

12%. This effect on the average portfolio share of the riskier assets is well explained by the fact that the 

uncertainty deriving from estimation risk compounds over time, implying that the difficulty to predict is 

magnified over longer planning periods. It follows that the opposite effects of a reduction in long-run risk 

resulting from predictability – which would cause the investment schedules to be upward sloping – and of 

estimation risk roughly cancel out for a long-horizon investor, with the result of either flat or weakly 

monotonically decreasing schedules. 

 

It is also clear that when an investor accounts for estimation risk, she develops a strong incentive to invest 

in short-term deposits, especially in the long run, even if in our framework the real short-term rate becomes 

risky for horizons exceeding one month. The average portfolio share in cash, which already doubles for a 

one-month horizon when estimation risk is accounted for, increases steadily in T  reaching 49% for a 5-year 

horizon. A strategy that rolls over “cash” investments is not only the safest among the available assets in 

terms of overall variance, but also the one that remains predictable with high precision from its own lagged 

value, the lagged return on bonds and real state, the dividend yield, the term premium, and the default 

spread as well as the inflation rate. Furthermore, it appears that shocks to the real short-term rate are 

negatively correlated with shocks to the term spread, with a coefficient that is large in absolute value (-

0.44). At the same time, a higher value of the lagged term spread predicts a higher future short-term rate 

(1.17). This embeds some mean reversion in the return to short term deposits, making them comparatively 

safer as the investment horizon grows. Therefore short term deposits de facto preserve their role of safe 

assets in relative terms, even though their stochastic nature is fully recognized by our econometric 

framework. 

 

Finally, recall from the previous section that the predictability of bond returns almost disappeared when we 

allowed for parameter uncertainty. It is therefore not surprising that the optimal share in 10-year bonds 

drops from 25% to 2% as the horizon grows, and REITs -- with their superior Sharpe ratio and more 

precisely estimated predictive relationships -- are included in the asset menu. 

 

Surprisingly, these patterns are not too dissimilar to those uncovered in European data, in optimal buy-and-
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hold optimal portfolio allocations simulated by Fugazza, Guidolin, and Nicodano [2007]. The reduction 

over T  associated with parameter uncertainty of the optimal shares invested in the most risky assets turns 

out to be optimal for a European investor, too. However, in the results shown by Fugazza, Guidolin, and 

Nicodano, the schedule for stocks is flatter than the one for securitized real estate. The schedules for cash 

and for bonds also have a similar pattern in optimal US and European portfolios, although the relevance of 

bonds in longer-run portfolios remains higher for a European investor. 

 

Ex post Performance Results 

In the literature, econometric models of predictable asset returns produce good in-sample fits and optimal 

portfolios built on estimated mean returns and volatilities usually display good in-sample performance. 

Moreover, expanding the asset menu cannot reduce the ex ante investor's welfare, as it is always possible to 

exclude – by assigning an optimizing zero weight – the additional asset(s) from the optimal portfolio. 

However, this is by no means a guarantee that expanding the asset menu will lead to improved ex post 

portfolio performance. This problem may arise, for example, when the proposed model for asset returns is 

mis-specified and/or there are large parameter estimation errors. To address this concern, we next explore 

how well real estate as an asset class performs when it is added to portfolios formed from 1995 onwards, on 

the basis of estimates obtained only on the basis of the contemporaneously available information on a 

recursive basis. We distinguish between ex post results as measured by standard reward-to-risk ratio 

indicators (e.g., the classical Sharpe ratio) and performance in terms of realized average utility (welfare) of 

the investor. 

 

Realized Reward-to-Risk Ratios 

Table 5 considers average performances over the period 1995-2004 when equity REITs are alternatively 

included or excluded from the asset menu. It reveals that the mean Sharpe ratio achieved by both a classical 

and a Bayesian investor increases – irrespective of the investor's horizon – when real estate is added to the 

asset menu. Such a change is substantial, ranging from 0.12 to 0.42, depending on the horizon. This is 

caused by the fact that realized portfolio volatility falls (except for the horizon 60=T ) as a result of 

declining investments in stocks. Such a reduction in risk taking appears not to have damaged profitability in 
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the out-of-sample period, as mean portfolio returns increase. 

 

We also test hypotheses concerning the portfolio Sharpe ratios following Jobson and Korkie [1981]. In our 

application, we are facing a pair of portfolio strategies, i.e., with and without real estate assets in the choice 

menu. We call Tt ,r  ( τ,...,1=t ) the 12 ×  vector that collects the excess returns on both strategies when the 

selected investment horizon is T  and τ  is the total length of the time series of portfolio performances; Tt ,r  

is assumed to be bivariate normal with mean vector µ  and covariance matrix ,Σ  with unbiased sample 

estimators given by the sample mean vector Tr  and sample covariance matrix .TS  Jobson and Korkie show 

that in finite samples, computing the Sharpe ratio as a simple ratio between the sample mean excess return 

and sample variance ( TiTiTi srSR ,,, /=  , 2,1=i ) leads to a biased estimation of the Sharpe ratio; for 

instance, using a Taylor approximation to the order 
2/1 τ  (i.e., of order )/1( 2τO ), they show that 

ESRi,T 
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i.e., that there is an over-estimation bias. As a result, TT SRSR ,2,1 −  is also affected by the bias (while 

TT SRSR ,2,1 /  is not).15 To test the null hypothesis that oH : ,0,2,1 =− TT SRSR  Jobson and Korkie suggest 

instead testing the transformed null hypothesis 
′
oH : −≡∆ TTT srTSR ,2,1 TT sr ,1,2 0=  and show that: 
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where one can estimate both numerators and denominators by replacing i,T,
Ti,σ  ( 2,1=i ), and T,12σ  with 

their sample estimates ,,Tir  ,,Tis  and .,12 Ts  

 

We proceed first to compute 95% (asymptotic) confidence intervals for the bias-corrected Sharpe ratios, 
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from portfolio strategies with and without real estate, both in the classical and in the Bayesian framework. 
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To save space, we report results only for ,1=T  3, 6, 24, and 60 months. In the classical case, they are as 

follows: 

1][-0.13,0.3][0.12,0.664][-0.36,0.0][0.12,0.491][-0.07,0.3][0.18,0.541][-0.06,0.3][0.20,0.57][0.00,0.37][0.25,0.63
0.0900.3930.158-0.3060.1240.3590.1280.3840.1860.443

6012631

RE NoRERE NoRERE NoRERE NoRERE NoRE

===== TTTTT

 

A comparison with Table 5 reveals that correcting for small sample bias hardly changes the point estimates 

of the ex post Sharpe ratios. Even though the confidence intervals (CIs) are rather wide, one can 

immediately spot a case (for 12=T ) in which the CIs for the two strategies are disjoint, i.e., the interval for 

the case with real estate lies completely to the right of the confidence interval for the strategy without real 

estate. In the other four cases ( ,1=T  3, 6, and 60 months), the CI with real estate has a lower bound that 

exceeds the point estimate of the Sharpe ratio without real estate, which is also a powerful indication that – 

even taking sample uncertainty into account – including real estate in the asset menu strongly increases ex 

post performance. In the case of the Bayesian portfolio strategies, we obtain: 

T  1 T  3 T  6 T  12 T  60

RE No RE RE No RE RE No RE RE No RE RE No RE

[0.25,0.64]

0.448
[-0.15,0.21]

0.031
[0.13,0.51]

0.320
[-0.14,0.23]

0.041
[0.08,0.45]

0.262
[-0.18,0.19]

0.005
[0.03,0.41]

0.222
[-0.19,0.20]

0.002
[0.00,0.61]

0.306
[-0.16,0.31]

0.078

 

Results are similar in the Bayesian case: once more there is one case ( 1=T ) in which the CIs are disjoint, 

and three cases ( 3=T , 6, 12) in which the CI with real estate has a lower bound that exceeds the point 

estimate of the Sharpe ratio without real estate.16 

 

However, these informal comparisons of CIs cannot substitute for a formal test of the hypothesis that the 

Sharpe ratios are identical across strategies with and without real estate. We therefore test 

′
oH : −≡∆ TTT srTSR ,2,1 TT sr ,1,2 0=  and obtain the following Jobson and Korkie test statistics (with 

corresponding p-values in parentheses):17 
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(0.000)(0.000)(0.023)(0.000)(0.001)(0.016)

(0.024)(0.005)(0.509)(0.193)(0.165)(0.059)

4.220-3.941-2.271-4.000-3.465-2.410-Bayesian

2.259-2.793-0.661-1.301-1.388-1.887-Classical

602412631 ====== TTTTTT

 

In this case there is a difference between classical and Bayesian results: while in the former case the SRz  

statistic has a U-shape pattern and the null of identical Sharpe ratios can be rejected (at a standard 5% size) 

only at 24=T  and 60, in the case of recursive Bayesian portfolios we reject the null of identical Sharpe 

ratios for all investment horizons, although also in this case SRz  reaches its highest values for long 

investment horizons. All in all, this is rather compelling evidence that including real estate in the asset 

menu does lead to higher ex post realized values of the Sharpe ratios, even when sample uncertainty is 

taken into account. 

 

As recently discussed in the literature (see, e.g., Gallo, Lockwood, and Rodriguez [2006]), Sharpe ratios are 

highly sensitive to non-normally distributed returns. We find strong evidence of non-normal returns in our 

sample. For instance, with a one-month investment horizon, in the classical framework the skewness of 

realized portfolio returns is -0.39 (-0.62 without real estate) while in the Bayesian asset allocation scheme 

skewness is -1.51 (-0.90 without real estate). The corresponding estimates for the excess kurtosis of one-

month realized portfolio returns are 1.77 (1.42 without real estate) and 5.37 (1.64 without real estate). One 

common remedy consists of supplementing the presentation of Sharpe ratios with related reward-to-risk 

measures that divide the numerator (mean excess return) of the Sharpe ratio by portfolio downside risk 

(semi-standard deviation), what is commonly called the Sortino ratio (also see Fishburn [1977]).18 We 

therefore present the Sortino measures in a format comparable to Table 5: 

0.2600.2940.1980.0970.1730.0430.1360.0350.0940.015Bayesian

0.0010.2390.2070.0470.1120.0830.1050.0470.0690.025Classical

6024631

RE NoRE NoRE NoRE NoRE No ∆∆∆∆∆
===== TTTTT

 

To save space, we have reported only the Sortino measures when real estate is not included in the asset 
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menu and the corresponding increase ( ∆ ) when real estate is additionally included. Although the values of 

the reward-to-risk ratio are now different, the basic implication that portfolio strategies that include real 

estate yield an ex post performance that is superior to strategies that exclude real estate continues to hold 

even when possible differences between overall and downside variance are taken into account. 

 

Realized Utility Comparisons 

We still have to assess the effects of real estate on the expected utility of an investor. Indeed, an increase in 

the Sharpe ratio is not necessarily associated with higher welfare, if it is obtained at the cost of worse 

higher-order moment properties of portfolio returns. This is because investors are typically averse to 

negative skewness and excess kurtosis, and these preferences are fully captured by a power utility function. 

For instance (and differently from a simpler mean-variance optimizer), a power utility investor may 

perceive a reduction in ex post realized utility when a portfolio exposes her to higher negative skewness of 

realized wealth (i.e., higher probability of large deviations below the mean) even though the portfolio 

Sharpe ratio improves. In fact, comparing ex post realized utility across different portfolio strategies is the 

only robust remedy to the presence of non-normalities in realized portfolio returns, as this performance 

measure perfectly aligns the ex ante preferences of investors when they select their optimal portfolios to the 

way in which these portfolios are evaluated and compared ex post. 

 

We obtain estimates of the welfare cost of restricting the span of the asset menu available to our investors. 

Call )ˆ;,( tttWV ωz  the realized utility of the unconstrained problem – i.e., when real estate belongs to the 

asset menu – and  )ˆ;,( R

tttWV ωz  the constrained realized utility, where 
R

tω̂  is the vector of portfolio 

weights obtained when real estate investments are ruled out. Note that in ex post out-of-sample experiments 

the constrained realized utility may exceed the unconstrained one, while ex ante this is impossible. The 

compensatory premium, 
R

tπ  , is the percentage of wealth that, when added to the investor's initial wealth, 

equates the realized utility from the constrained and unconstrained problems: 
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The compensatory premium is therefore a measure of the ex post welfare gain from enlarging the asset 

menu to include real estate. Our estimates of the average premium confirm earlier insights based on Sharpe 

ratios, in that they are always positive and far from negligible. An investor would be willing to pay an 

annual fee in excess of 1.39% of her initial wealth in order to improve her portfolio performance by 

accessing indirect real estate vehicles such as equity REITs. Welfare gains are larger, apart from the 1=T  

month horizon, for a classical investor who overlooks estimation risk when choosing portfolio composition. 

Such an investor would have been willing to pay a minimum annual fee of 1.63% of her initial wealth in 

order to diversify into real estate over our recursive period 1995-2004. This fee is larger for horizons of one 

year or longer, suggesting that real estate especially adds value to investment strategies for long-horizon 

classical investors. Welfare gains are smaller, translating into fees of between 39.1  and 59.2  percent of 

initial wealth, for a Bayesian investor who, by accounting for estimation risk, is substantially more cautious 

than a classical one. Our results extend to an ex post setting previous evidence on in-sample (ex ante) 

performance gains from real estate, see e.g. Seiler, Webb and Myer [1999] and Feldman [2003]. 

 

Looking at the certainty equivalent return (CER) rows in Table 5 (for the classical case) shows that while 

asset menus that include real estate yield annualized CERs between 6.3 and 8.7 percent, when real estate is 

excluded from the asset menu the CERs are between 4.1 and 6.8 percent.. The CER values are generally 

lower in the Bayesian case, ranging between 6.2 and 8.8 percent when real estate is included and between 

4.8 and 6.2 percent when real estate is excluded. One surprising feature of our results is that a Bayesian 

investor achieves lower ex post expected utility than a classical one. In Jorion [1985], a pioneering study of 

mean-variance portfolio choice, the opposite occurs. Furthermore, an opposite result has also been reported 

in one-period portfolio choice models that allow for predictable returns (Abhyankar, Basu, and Stremme 

[2005], Avramov and Chordia [2006], and Wachter and Warusawitharana [2005]). This is all the more 

surprising because in the present paper we have allowed all predictors in our VAR to predict future returns, 

even the ones that do not display statistical significance. This means that we have not performed any typical 
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specification search of the predictors that best forecast excess returns on each type of asset class. By also 

considering imprecise predictors we are likely to magnify the difference between the classical and the 

Bayesian asset allocation, as the latter discounts the weight to be assigned to asset classes more, the less 

precise is the prediction of future returns. As a consequence we expected Bayesian investors, who take into 

account forecasting accuracy, to do much better than classical investors, who rely too much on imprecisely 

estimated parameters. Despite this, we find that the ex post performance of Bayesian portfolios is worse 

than the performance of classical portfolios.19 

 

Value of Time Diversification 

Return predictability may affect asset allocation decisions in two ways. First, one-period-ahead expected 

returns and volatilities change with the arrival of new information, generating the possibility of market 

timing. Gains from market timing can be assessed by comparing performance and welfare of short-term 

investors when they alternatively use or ignore return predictability. A large literature, mentioned in the 

introduction, evaluates these gains. In our sample, the (unreported) out-of-sample value of market timing is 

negative, both for a classical investor and a Bayesian one, whether or not real estate is included.20 

 

The second consequence of predictability can be appreciated in multi-period portfolio problems only, as it 

entails a modification in the conditional variances and covariances of multi-period returns. It may thus 

happen that an asset class becomes riskier over a long horizon because its returns are mean-averting. Thus, 

longer-term investors may be able to enhance their risk-adjusted portfolio performance and welfare by 

taking into account these conditional multi-period volatilities in their portfolio optimizers. 

 

We now turn to the assessment of ex post gains brought about by longer horizons that enable the 

exploitation of intertemporal diversification. It is well known that the annualized volatility for a T-period 

investor is less than T  times the one period volatility when mean reversion in returns allows for risk 

diversification over time. Our experiment reveals that ex post gains from risk diversification over time are 

not present, whether or not real estate is included. Mean annualized volatility of portfolio returns increases 
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from 8.5% for a 1=T  month horizon to 11.6% for a 60=T  horizon when a classical investor uses an 

asset menu that accounts for real estate and from 7.0% to 19.0% when real estate is excluded. It is also the 

case that annual mean portfolio returns also fall from 10.8% (8.2% without REITs) to 9.2% (7.1%). Similar 

results obtain for horizons shorter than 60 months. The average certainty equivalent of welfare drops from 

8.7% (6.8% without REITs) to 7.6% (4.2% without REITs). This points out that exploiting linear 

predictability for the construction of expected utility maximizing portfolios has no value for 1>T . The 

very same pattern emerges for the less aggressive Bayesian investor, who accounts for parameter 

uncertainty. 

 

A vast literature has already questioned the possibility of exploiting linear predictability for improving ex 

post investment performance for short-term portfolios (see Cooper, Gutierrez, and Marcum [2005] and 

references therein), as well as when real estate is considered (see Ling, Naranjo, and Ryngaert [2000]). Our 

results cast doubt on the possibility of exploiting the risk-return tradeoff for long-horizon investors in the 

way suggested by Campbell and Viceira [2005]. Clearly, this does not imply that gains would not exist over 

other sample periods. It also leaves open the possibility that alternative prediction models might have 

yielded significant gains over our sample period. Finally, it remains possible that non-linear econometric 

frameworks (e.g., of the Markov switching type models, as in Guidolin and Timmermann [2005]) may lead 

to more precisely estimated and economically valuable predictability patterns, also in the presence of public 

real estate vehicles. 

 

Discussion and Conclusions 

Irrespective of the investment horizon and of the estimation method, we find positive ex post welfare effects 

deriving from the inclusion of equity REITs in the asset menu. These gains are larger for a classical investor 

who, because she overlooks estimation risk when choosing her optimal portfolio composition, is less 

cautious than a Bayesian one. These results extend to an ex post setting previous evidence on in-sample, ex 

ante performance gains from real estate. Our second experiment, devoted to the assessment of ex post gains 

from risk diversification over time, reveals that such gains are not present, as the average annualized 

volatility of portfolio returns increases in the investor horizon, while it should fall when mean reversion 
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allows for intertemporal risk diversification. It is also the case that annual mean portfolio returns fall as the 

investment horizon increases. This indicates that exploiting linear predictability for the construction of 

expected utility maximizing portfolios has no value for longer horizon investors, whether or not real estate 

is included. Our results thus cast doubt on the possibility of exploiting the risk-return tradeoff for long 

horizon investors in the way suggested by Campbell and Viceira [2005]. Clearly, this does not imply that 

gains from time diversification would not exist over other sample periods. More importantly, it leaves open 

the possibility that alternative prediction models may yield significant gains, even over our sample period, 

as suggested by Lettau and Van Nieuwerburgh [2006]. 

 

Our results on time diversification – and hence on the impact of predictability on ex post out-of-sample 

welfare – should be considered as a lower bound on its usefulness for another reason. In our VAR analysis, 

we allow all predictors to predict future returns, even the ones that do not display statistical significance. 

Recent work on one-period portfolio choice suggests that out-of-sample performance can be improved by 

carefully selecting the predictors (Pesaran and Timmerman [1995] and Bossaerts and Hillion [1999]) and by 

relying on CAPM-based prediction rather than on a linear vector autoregression framework (Avramov 

Chordia [2006] and Handa and Tiwari [2006]). Similarly, in performing our Bayesian estimates we impose 

an uninformative prior, implying that the investor neither believes nor doubts à priori the strength of 

predictability. Recent work on one-period portfolio choice suggests that better out-of-sample performance 

might actually be obtained by imposing ex ante skepticism by the investor (Wachter and Warusawitharana 

[2005]). Future research might check whether this is also true in a multi-period portfolio model. 

 

Finally, our paper has used FTSE NAREIT Equity REIT Index returns to proxy for the U.S. public real 

estate asset class. However, several investors with a potential interest in our results may also access real 

estate investments using commingled real estate funds (CREFs), which are essentially composed of 

unlevered properties held on behalf of investors in the portfolios of fiduciary firms (see, e.g., Gallo, 

Lockwood, and Rodriguez [2006]). It would be possible and interesting to extend our analysis of optimal 

portfolio choices under predictable returns to include return indices proxying for private market CREF 
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returns in addition to the FTSE NAREIT series used in this paper.21 
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Appendix: Long Run Asset Allocation when Returns Are 

Predictable 
 

In this appendix we review the structure and solution methods for a portfolio choice problem when returns 

are predictable and the uncertainty about the extent of predictability is taken into account. The methodology 

follows Kandel and Stambaugh [1996] and Barberis [2000] and so we only briefly discuss the main issues 

and technical details. 

Long run portfolio strategies may be calculated under two alternative assumptions: buy-and-hold vs. 

optimal rebalancing. An investor who follows a buy-and-hold strategy chooses the optimal allocation at the 

beginning of the planning horizon ( t ) and does not modify it until the end-point ( Tt + ) is reached. Clearly, 

when T  is large, this represents a strong commitment not to revise the portfolio weights despite the receipt 

of news characterizing the investment opportunity set. Under a rebalancing strategy, the investor chooses 

the asset allocation at the beginning of the planning horizon taking into account that it shall be optimal to 

modify the portfolio weights at intermediate dates (rebalancing points), ,ϕ+t   ,2ϕ+t  ..., ϕ−+ Tt . In the 

following we focus only on buy-and-hold portfolio strategies (see Fugazza, Guidolin, Nicodano [2007] for 
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details on rebalancing strategies). 

 

Classical Buy-and-Hold Investor 

Call θ  the vector collecting all the parameters entering (2), i.e. 
′≡ µ[θ )( ′Φvec .])( ′′Σvech  Under (2), the 

(conditional) distribution of cumulative future returns (i.e. the first four elements in kt

T
kTt zz +=∑≡ 1, ) is 

multivariate normal with mean and covariance matrix given by the appropriately selected elements of:  
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where I  is the identity matrix of dimension n  and ΦΦ ∏≡ =
k
i

k

1 . Since the parametric form of the 

predictive distribution of Tt ,z  is known, it is simple to approach the problem in (1), or equivalently  
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where ( ( )][],[ ,, TttTtt VarE zzφ  is a multivariate normal with mean Etz t,T  and covariance matrix 

Var tz t,T ), by simulation methods. Similarly to Kandel and Stambaugh [1996], Barberis [2000], and 

Guidolin and Timmermann [2005], this means evaluating the integral in (6) by drawing a large number of 

times ( N ) from ( )][],[ ,, TttTtt VarE zzφ  and then maximizing the function  
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TtR  represent the first four elements of 
i

Ttz ,  along a sample path .,...,1 Ni =  At 

this stage, the portfolio weight non-negativity constraints are imposed by maximizing (7) using a simple 

two-stage grid search algorithm that sets 
j

tω  to 0, 0.01, 0.02, ..., 0.99, 0.9999 for ,sj = ,b r . 

 

Bayesian Buy-and-Hold Investor 

Given the problem  
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the task is somewhat simplified by the fact that predictive draws can be obtained by drawing from the 

posterior distribution of the parameters and then, for each set of parameters drawn, sampling one point from 

the distribution of returns conditional on past data and the parameters. At this point, (2) can be re-written as:  
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or simply ,EXCZ +=  where Z  is a ( 1,1 +− nt ) matrix with the observed vectors as rows, X  is a 

( 2,1 +− nt ) matrix of regressors, and E  a ( 1,1 +− nt ) matrix of error terms, respectively. All the 

coefficients are instead collected in the ( 1,2 ++ nn ) matrix .C  If we consider the following standard 

uninformative diffuse prior:  

,||),( 2

2+−∝
n

p ΣΣC  

then the posterior distribution for the coefficients in ,θ  )|,( 1

tp ZC &&−Σ  can be characterized as:  

( )11

11

)(),ˆ(,|)(

)ˆ,2(Wishart|

−′−

−−

∼

−−∼

XXCZC

SZ

⊗ΣΣ

Σ

vecNvec

nt

t

t

&&

&&
 

where )ˆ()ˆ(ˆ CXZCXZS −′−=  and ,)(ˆ 1
ZXXXC

′−′=  i.e. the classical OLS estimators for the coefficients 

and covariance matrix of the residuals. 

 

We adopt the following simulation method. First, we draw N  independent variates from ).|,( 1

tp ZC &&−Σ  

This is done by first sampling from a marginal Wishart for 
1−Σ  and then (after calculating Σ ) from the 

conditional ( )1)(),ˆ( −′
XXC ⊗ΣvecN , where Ĉ  is easily calculated. Second, for each set ),( ΣC  obtained, 

the algorithm samples cumulated returns from a multivariate normal with mean vector and covariance 

matrix given by (5). Given the double simulation scheme, in this case N  is set to a relatively large value of 

300,000 independent trials. 
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Table 1 – Descriptive Statistics 

The upper part of both Panel A and Panel B reports descriptive statistics for annualized excess returns on stocks, 

bonds, and equity REITs; for returns on cash investments (real and nominal); and for predictor variables 

(dividend yield, inflation, default spread and term spread). The lower part of both panels reports, for the various 

samples, contemporaneous correlations. The sample period considered is 1/1972 – 12/ 2004 in Panel A, and 

1/1972 – 12/1994 in Panel B. Data on stocks and real estate are from CRSP (NYSE, NASDAQ, and AMEX 

value-weighted indices) and NAREIT respectively. We use FREDII
®
 series for computing the returns on 10-year 

constant-maturity Treasury bonds and on 3-month Treasury bills. Inflation is derived from the consumer price 

index for all urban consumers (all items, seasonally adjusted). 

Panel A: Sample 1972-2004 

  
Stocks Bonds 

Real 

Estate 

Nominal 

Short Rate

Real Short 

Rate 

Dividend 

Yield 
Inflation 

Def. 

Spread 

Term 

Spread 

Mean 4.002 1.469 5.946 6.549 1.867 36.948 4.667 2.039 1.247 

Standard Deviation 16.069 7.842 13.781 1.004 1.217 4.152 1.189 0.167 0.602 

Sharpe Ratio 2.490 1.873 4.315 - - - - - - 

 

Correlation Matrix 

 
Stocks Bonds 

Real 

Estate 

Nominal 

Short Rate

Real Short 

Rate 

Dividend 

Yield 
Inflation 

Def. 

Spread 

Term 

Spread 

Stocks 1         

Bonds 0.176 1        

Real Estate 0.570 0.167 1       

Nominal Short Rate -0.069 0.127 -0.104 1      

Real Short Rate 0.121 0.237 0.074 0.440 1     

Dividend Yield -0.071 -0.025 -0.061 0.680 0.074 1    

Inflation -0.182 -0.136 -0.163 0.394 -0.652 0.498 1   

Default Spread 0.017 0.280 0.062 -0.032 0.232 -0.125 -0.264 1  

Term Spread 0.050 -0.347 0.086 -0.706 -0.362 -0.184 -0.227 -0.084 1 

 

Panel B: Sample 1972-1994 

  Stocks Bonds 

Real 

Estate 

Nominal 

Short Rate

Real Short 

Rate 

Dividend 

Yield Inflation 

Default 

Spread 

Term 

Spread 

Mean 2.755 0.715 4.489 7.595 1.953 44.604 5.620 1.960 1.238 

Standard Deviation 15.974 8.113 14.090 1.002 1.306 2.794 1.216 0.159 0.673 

Sharpe Ratio 1.725 0.881 3.196 - - - - - - 

 

Correlation Matrix 

  Stocks Bonds 

Real 

Estate 

Nominal 

Short Rate

Real Short 

Rate 

Dividend 

Yield Inflation 

Def  

Spread 

Term 

Spread 

Stocks 1         

Bonds 0.305 1        

Real Estate 0.675 0.210 1       

Nominal Short Rate -0.078 0.189 -0.089 1      

Real Short Rate 0.144 0.301 0.114 0.470 1     

Dividend Yield -0.106 -0.005 -0.050 0.655 0.095 1    

Inflation -0.218 -0.168 -0.196 0.319 -0.687 0.437 1   

Default Spread 0.139 0.351 0.097 0.226 0.413 0.175 -0.258 1  

Term Spread 0.051 -0.389 0.075 -0.777 -0.333 -0.356 -0.283 -0.168 1 
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Table 2 – Classical Parameter Estimates for a VAR(1) Model 

The table reports the MLE estimation outputs for the Gaussian VAR(1) model: 

ttt zz ε+Φ+= −1µ  

where zt includes continuously compounded monthly excess asset returns and the dividend yield, and 

),( ~ Σ0ε Nt . t statistics are reported in parentheses under the corresponding point estimates. Bold coefficients 

imply a p-value of 0.1 or less. 

  
Stocks t Bonds t

Real 

Estate t

Dividend 

Yield t 

Term 

Spread t

Default 

Spread t 

Real Short 

Rate t 
Inflationt

  
  µ’ 

0.009 -0.007 0.001 0.000 0.001 0.000 -0.004 0.003   

(0.710) (-1.199) (0.082) (0.399) (3.393) (-0.157) (-4.889) (3.608) 

  
  Φ’ 

-0.014 -0.057 0.101 0.001 0.001 0.000 -0.005 0.004 Stocks t-1 
(-0.241) (-1.922) (1.980) (0.572) (0.491) (-1.139) (-1.312) (1.308) 

-0.084 0.017 0.208 0.004 0.002 -0.001 0.030 -0.031 Bonds t-1 
(-0.725) (0.292) (2.097) (0.871) (0.407) (-1.466) (4.111) (-4.803) 

0.113 -0.025 -0.018 -0.004 0.009 -0.001 -0.011 0.003 Real Estate t-1 
(1.619) (-0.736) (-0.295) (-1.546) (4.004) (-2.330) (-2.522) (0.751) 

1.446 0.349 0.974 0.954 0.013 -0.003 -0.101 0.089 Dividend Yield t-1 
(4.262) (2.091) (3.362) (80.423) (1.195) (-2.425) (-4.807) (4.639) 

-10.843 -2.245 -5.816 0.432 0.314 0.025 1.168 -0.507 Term Spread t-1 

(-4.426) (-1.865) (-2.781) (5.045) (3.961) (3.141) (7.697) (-3.679) 

4.736 7.053 6.730 -0.406 -0.104 0.971 0.905 -0.844 Default Spread t-1 
(0.938) (2.841) (1.560) (-2.303) (-0.639) (58.536) (2.892) (-2.969) 

-6.563 -1.316 -4.666 0.195 -0.111 0.017 1.282 -0.185 Real Short rate t-1 
(-3.575) (-1.459) (-2.977) (3.043) (-1.874) (2.895) (11.271) (-1.795) 

-9.500 -2.431 -6.288 0.303 -0.193 0.023 0.952 0.233 Inflation t-1 
(-4.553) (-2.370) (-3.529) (4.162) (-2.858) (3.311) (7.365) (1.985) 

  
  Covariance matrix (for VAR(1) residuals) 

 
Stocks t Bonds t

Real 

Estate t

Dividend 

Yield t 

Term 

Spread t

Default 

Spread t 

Real Short 

Rate t 
Inflation t

Stocks t 0.002 0.137 0.547 -0.885 0.059 -0.199 0.163 -0.213 

Bonds t 0.000 0.000 0.134 -0.200 -0.400 0.359 0.224 -0.08 

Real Estate t 0.001 0.000 0.001 -0.558 0.082 -0.188 0.078 -0.129 

Dividend Yield t -6.2E-05 -6.9E-06 -3.3E-05 2.4E-06 -0.067 0.170 -0.168 0.226 

Term Spread t 3.8E-06 -1.3E-05 4.6E-06 -1.5E-07 2.1E-06 -0.282 -0.443 -0.043 

Default Spread t -1.3E-06 1.1E-06 -1.1E-06 3.9E-08 -6.0E-08 2.2E-08 0.062 0.015 

Real Short rate t 2.0E-05 1.4E-05 8.2E-06 -7.3E-07 -1.8E-06 2.5E-08 7.7E-06 -0.872 

Inflation t -2.4E-05 -4.6E-06 -1.2E-05 8.9E-07 -1.6E-07 5.5E-09 -6.1E-06 6.3E-06 
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Table 3 – Bayesian Coefficient Estimates for a VAR(1) Model 

The table reports the Bayesian posterior means for the coefficients of the Gaussian VAR(1) model: 

ttt zz ε+Φ+= −1µ  

where zt includes continuously compounded monthly excess asset returns, the real 1-month interest rate, the rate 

of inflation, the term spread, and the dividend yield; ),( ~ Σ0ε Nt . The standard errors of the Bayesian posterior 

densities are reported in parentheses under the corresponding posterior means. The posteriors are obtained from 

a standard uninformative prior, 
2)/2-(n||)p(C, +Σ∝Σ , where C = [µ’ Φ’]’ is the matrix of the coefficients in the 

VAR model and n is the number of variables (4) in the multivariate system. The lower panel shows volatilities 

and covariances on the main diagonal and below it, and implied pairwise correlations in the upper triangular 

portion. 

 

 

  
Stocks t Bonds t

Real 

Estate t

Dividend 

Yield t 

Term 

Spread t

Default 

Spread t 

Real 

Short 

Rate t 

Inflationt

  
  µ’ 

0.009 -0.007 0.001 0.000 0.001 0.000 -0.004 0.003   

(0.014) (0.007) (0.012) (0.000) (0.000) (0.000) (0.001) (0.001) 

  
  Φ’ 

-0.015 -0.057 0.101 0.001 0.001 0.000 -0.005 0.004 
Stocks t-1 

(0.069) (0.034) (0.059) (0.002) (0.002) (0.000) (0.004) (0.004) 

-0.083 0.016 0.209 0.004 0.002 -0.001 0.030 -0.031 
Bonds t-1 

(0.133) (0.066) (0.114) (0.005) (0.004) (0.000) (0.008) (0.007) 

0.113 -0.025 -0.018 -0.004 0.009 -0.001 -0.011 0.003 
Real Estate t-1 

(0.080) (0.039) (0.068) (0.003) (0.003) (0.000) (0.005) (0.004) 

1.449 0.350 0.977 0.953 0.013 -0.003 -0.101 0.089 
Dividend Yield t-1 

(0.388) (0.191) (0.333) (0.014) (0.013) (0.001) (0.024) (0.022) 

-10.834 -2.259 -5.837 0.432 0.314 0.025 1.168 -0.507 
Term Spread t-1 

(2.790) (1.375) (2.384) (0.097) (0.090) (0.009) (0.173) (0.158) 

4.713 7.061 6.752 -0.406 -0.104 0.971 0.902 -0.841 
Default Spread t-1 

(5.786) (2.833) (4.935) (0.202) (0.186) (0.019) (0.358) (0.326) 

-6.564 -1.322 -4.682 0.196 -0.111 0.017 1.282 -0.185 
Real Short rate t-1 

(2.099) (1.036) (1.798) (0.073) (0.068) (0.007) (0.130) (0.118) 

-9.501 -2.438 -6.307 0.304 -0.193 0.023 0.952 0.233 
Inflation t-1 

(2.378) (1.173) (2.037) (0.083) (0.077) (0.008) (0.147) (0.134) 
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Table 3 (continued) – Bayesian Coefficient Estimates for a VAR(1) Model 

 

 

  
  Covariance matrix (for VAR(1) shocks) 

 

 
Stocks t Bonds t 

Real 

Estate t 

Dividend 

Yield t 

Term 

Spread t

Default 

Spread t 

Real Short 

Rate t 
Inflationt

2.6E-03 
Stocks t 

(1.8E-04) 
0.138 0.547 -0.885 0.059 -0.199 0.164 -0.213 

1.8E-04 6.3E-04 
Bonds t 

(6.6E-05) (4.4E-05)
0.134 -0.200 -0.400 0.349 0.224 -0.083 

1.2E-03 1.5E-04 0.002 
Real Estate t 

(1.3E-04) (5.7E-05) (1.3E-04)
-0.557 0.082 -0.188 0.078 -0.128 

-8.1E-05 -9.0E-06 -4.3E-05 3.2E-06 
Dividend Yield t 

(5.6E-06) (2.3E-06) (4.4E-06) (2.0E-07)
-0.067 0.170 -0.168 0.226 

5.0E-06 -1.7E-05 5.9E-06 -2.0E-07 2.7E-06 
Term Spread t 

(4.3E-06) (2.2E-06) (3.7E-06) (1.5E-07) (1.7E-07)
-0.282 -0.443 -0.043 

-1.7E-06 1.5E-06 -1.4E-06 5.1E-08 -7.8E-08 2.8E-08 
Default Spread t 

(4.4E-07) (2.3E-07) (3.8E-07) (1.5E-08) (1.5E-08) (1.8E-09) 
0.062 0.015 

2.6E-05 1.8E-05 1.1E-05 -9.5E-07 -2.3E-06 3.3E-08 (1.0E-05 
Real Short rate t 

(8.4E-06) (4.2E-06) (7.2E-06) (2.9E-07) (2.8E-07) (2.7E-08) (6.6E-07) 
-0.872 

-3.1E-05 -6.0E-06 -1.6E-05 1.2E-06 -2.0E-07 7.2E-09 -7.9E-06 8.2E-06 
Inflation t 

(7.7E-06) (3.7E-06) (6.5E-06) (2.7E-07) (2.4E-07) (2.5E-08) (5.4E-07) (5.1E-07)
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Table 4 – Optimal Average Portfolio Weights 

This table reports mean optimal portfolio weights for stocks, bonds, and cash for the two alternative cases in 

which real estate is or is not in the asset menu. The investment horizon varies from 1 (first two rows) to 60 

months (last two rows). For each horizon, means are computed over 120 monthly portfolio allocations on the 

recursive sample 1995-2004. In the Bayesian case, parameter uncertainty is accounted for. The coefficient of 

relative risk aversion is set equal to 5. 

 

 Stock Bond E-REIT Cash 

 
With E-
REIT 

Without E-
REIT 

With E-
REIT 

Without E-
REIT  

With E-
REIT 

Without E-
REIT 

       T=1 

Classical 0.13 0.38 0.27 0.43 0.50 0.10 0.19 

Bayesian 0.11 0.33 0.25 0.27 0.43 0.21 0.40 

       T=3 

Classical 0.15 0.40 0.18 0.27 0.49 0.18 0.33 

Bayesian 0.11 0.33 0.16 0.22 0.38 0.35 0.45 

       T=6 

Classical 0.17 0.43 0.15 0.25 0.50 0.18 0.32 

Bayesian 0.12 0.33 0.10 0.17 0.38 0.40 0.50 

       T=12 

Classical 0.17 0.46 0.07 0.14 0.53 0.23 0.40 

Bayesian 0.13 0.33 0.04 0.11 0.38 0.45 0.56 

       T=24 

Classical 0.19 0.47 0.02 0.10 0.54 0.25 0.43 

Bayesian 0.12 0.31 0.02 0.07 0.37 0.49 0.62 

       T=60 

Classical 0.29 0.57 0.00 0.07 0.59 0.12 0.36 

Bayesian 0.14 0.29 0.01 0.07 0.33 0.52 0.64 
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Table 5 – Ex post Performance (1995 - 2004 Sample) 

The table shows the mean ex post performance of optimal portfolios recursively computed over the sample January 1995 - November 2004. 

Performance measures are computed for an investor with constant relative risk aversion equal to 5 and different investment horizons (from 1 to 60 

months). Two alternative asset menus are considered, with and without equity REITs. Panel A reports the performance of classical optimal portfolios 

while panel B covers Bayesian portfolios. 

Classical  

  T=1 T=3 T=6 T=12 T=24 T=60 

  

With 

E-

REIT 

Without

E-REIT
∆ With 

E-REIT

Without

E-REIT
∆ 

With 

E-

REIT 

Without

E-REIT
∆ 

With 

E-

REIT 

Without

E-REIT
∆ 

With 

E-

REIT 

Without

E-REIT
∆ With 

E-REIT

Without

E-REIT
∆ 

Sharpe ratio 0.442 0.186 0.256 0.383 0.128 0.256 0.358 0.123 0.235 0.304 -0.159 0.463 0.215 0.052 0.163 0.390 0.085 0.306 

Certainty Equivalent 8.742 6.810 1.931 8.263 6.436 1.827 8.008 6.279 1.729 7.366 4.459 2.907 6.288 4.344 1.944 7.587 4.123 3.464 

Annual Mean Returns 10.782 8.145 2.637 9.997 7.625 2.372 9.781 7.555 2.226 9.571 5.502 4.070 8.712 6.865 1.847 9.220 7.080 2.140 

Annualized Volatility 8.452 7.040 -1.411 8.069 6.786 -1.283 8.394 7.050 

-

1.343 9.948 6.592 -3.356 11.836 7.572 -4.265 11.619 18.972 7.353 

 

Bayesian  

  T=1 T=3 T=6 T=12 T=24 T=60 

  

With 

E-REIT 

Without

E-REIT
∆ With 

E-REIT

Without

E-REIT
∆ With 

E-REIT

Without

E-REIT
∆ 

With 

E-

REIT

Without

E-REIT
∆ 

With 

E-

REIT

Without

E-REIT
∆ With 

E-REIT

Without

E-REIT
∆ 

Sharpe ratio 0.447 0.031 0.416 0.319 0.041 0.278 0.261 0.005 0.256 0.220 0.002 0.218 0.137 -0.002 0.140 0.299 0.074 0.225 

Certainty Equivalent 8.750 6.001 2.749 7.794 6.166 1.628 7.376 5.898 1.478 6.970 5.461 1.509 6.224 4.764 1.460 6.773 5.028 1.745 

Annual Mean Returns 10.247 6.946 3.302 8.764 6.951 1.813 8.317 6.684 1.633 8.118 6.562 1.556 7.351 6.330 1.021 7.327 6.517 0.810 

Annualized Volatility 7.266 5.933 -1.333 6.083 5.528 -0.555 6.131 5.559 

-

0.572 7.123 6.650 -0.472 7.804 5.603 -2.201 6.465 8.350 1.885 
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Footnotes 
 
1. The next section explains in some detail the classical and Bayesian asset allocations models. In 

essence, in a classical framework the parametric model that is used to capture predictability 

patterns and to generate predictions for means, variances, and covariances of returns is (counter-

factually) taken to correspond to the true but unknown generating process. This completely ignores 

the presence of any parameter uncertainty. In a Bayesian framework the parameters of the model 

are instead considered to be random variables and therefore the presence of estimation uncertainty 

is fully integrated out when deriving predictions of means, variances, and covariances. 
 

2.    In our paper, log returns on individual assets are assumed to be normally distributed. However the 

resulting optimal portfolio returns are not. 
 

3.    Giorgiev, Gupta and Kunkel [2003] find instead negligible increases in the Sharpe ratio over 1990-

2002. 
 

4.    Indeed, an investor's welfare can substantially increase if she takes into account the uncertainty in 

forecasts by using Bayesian updating (see Jorion [1985] and Kandel and Stambaugh [1996]), 

especially when return predictability appears weak according to classical statistical tests. 
 

5.    Uninformative priors may be a suboptimal choice, even in in-sample exercises. Hoovernaars et al. 

[2007b] develop the concept of a robust portfolio—the portfolio of an investor with a prior that has 

minimal welfare costs when evaluated under a wide range of alternative priors. We do not pursue 

this extension in the current paper. 
 

6.    The dividend yield is widely used in the literature as a predictor of future excess asset returns. See 

Campbell and Shiller [1988], Fama and French [1989], and Kandel and Stambaugh [1996]. Karolyi 

and Sanders [1998] and Liu and Mei [1992] find that the dividend yield also helps in predicting 

REIT returns. 
 

7.    Following Brandt [1999] and Campbell, Chan, and Viceira [2003], we allow the slope of the yield 

curve and the spread between high- and medium-rated debt, both anticipating business cycle 

dynamics, to predict future asset returns. 
 

8.    This result confirms previous evidence on the higher degree of predictability of REITs when 

compared to equities and bonds, see e.g., Liao and Mei [1998]. 
 

9.    In fact, the dividend yield and the term spread also turn out to be rather persistent variables, 

although unreported tests confirm the stationarity of the VAR(1) system. These results are 

consistent with the existing literature, see e.g., Fugazza, Guidolin, and Nicodano [2007] on a 

different data set. Detailed results on the econometric estimates and related tests are available upon 

request. 
 

10. The opposite interpretation applies when 012 <φ  and ,0<ρ  in the sense that this configuration 

configures a built-in element of mean-aversion that makes an asset riskier the longer the investment 

horizon. Crucially, these effects may be of first-order importance even when the standard errors 

associated with many of the coefficients in the VAR(1) model are high and the estimated VAR(1) 

coefficients are relatively small, as long as adequate covariance loadings come through estimates of 

the off-diagonal elements of the covariance matrix of the residuals. 
 

11. In a similar way, bond returns tend to be positively serially correlated because of their positive shock 

correlation with the default premium. A fall in the default spread is associated, through a positive 

contemporaneous correlation (0.35), with both lower unexpected bond returns today and lower 

expected bond returns tomorrow, through a positive VAR coefficient (7.05). This makes holding a 

bond for two periods riskier than in the absence of such intertemporal links. 
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12. We perform these calculations for a range of alternative coefficients of relative risk aversion ( ,2=γ  

4, 5, and 10). Since the results do not appear to be overly sensitive – especially as far as welfare 

costs are concerned – to a specific choice of preferences, in what follows we only report results for 

the case .5=γ  Detailed results are available upon request. 
 

13. Notice that our arguments are by construction simple partial equilibrium arguments concerning 

optimal investment policies. 
 

14. We could also assess the effects of market timing by comparing the 1=T  allocation with 

predictable versus i.i.d. returns that ignore all forms of predictability. The allocation for 1=T  may 

differ from the i.i.d. benchmark for market timing effects, which derive from conditional moments 

of asset returns being different than unconditional ones due to predictable returns. However, for 

1=T  there is no intertemporal hedging demand. Results are available upon request. 
 

15. The asymptotic distribution of the statistic TiSR ,  is obtained by observing that it is a ratio of 

elements of Tr  and TS  which have known small sample distributions when returns are assumed to 

be bivariate normal: 

,
2

1
1

,
2

2

,

,

, 

















+∼=

i

i

i

i
asy

Ti

Ti

Ti N
s

r
SR

σ
µ

τσ
µ  

 where the variance is derived from )/1( τO  Taylor series approximations. 
 

16. Notice that we are performing classical inference on Sharpe ratios obtained from portfolio strategies 

computed from a Bayesian statistical framework. 
 

17. We set strategy 2 to include real estate and strategy 1 not to. Therefore we expect that if 

,,1,2 TT SRSR >  then −≡∆ TTT srTSR ,2,1  .0,1,2 <TT sr  Jobson and Korkie [1981] stress that at least a 

few dozen observations are needed for their tests to yield satisfactory power. This should be no 

problem in our application because we always have at least 60=τ  observations available. 
 

18. When returns are normally distributed, total variance and semi-variance (which conditions on 

returns being below their mean) are identical. Therefore deviations from normality are needed for 

total and downside variance to differ. 
 

19. Tentatively, we ascribe the difference between Jorion’s [1985] and our results to the fact that he 

considers estimation risk concerning mean returns only. On the contrary, our method accounts for 

estimation errors affecting all parameter estimates. 
 

20. Details on the i.i.d. case are available from the authors. Interestingly, in this case only adding real 

estate can reduce ex post welfare if the investor does not take parameter uncertainty into account. 
 

21. However such a choice presents a few issues. First, CREF indices are available for shorter periods 

than the FTSE NAREIT Equity REIT Index and only at quarterly frequencies. Short time series are 

of course problematic for our time series approach to model predictability. Second, as is well known 

in the literature (see Geltner [1993] and Cho, Kawaguchi, and Shilling [2003]), CREF index returns 

(including the NCREIF Property Index) should be unsmoothed to adjust for appraisal smoothing 

biases. Third, a portion of the literature has argued that comparisons between equity REITs (which 

are typically similar to equity stock, and therefore levered on both sides of the balance sheets of the 

underlying investment trusts) and CREF index returns would require that the former be un-levered 

(see e.g., Fisher, Geltner, and Webb [1994]). However, in our application that would create further 

problems of homogeneity with stock indices, which are themselves (often heavily) levered financial 

instruments. 
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