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Abstract
This paper describes a flexible computing framewddsigned to create a dynamic
microsimulation model, the Life-cycle Income AnatysModel (LIAM). The principle
computing characteristics include the degree of ulardbation, parameterisation,
generalisation and robustness. The paper desdtibedecisions taken with regard to type
of dynamic model used.
The LIAM framework has been used to create a nundiedifferent microsimulation
models, including an Irish dynamic cohort modedpatial dynamic microsimulation model
for Ireland, an indirect tax and consumption mddelEU15 as part of EUROMOD and a
prototype EU dynamic population microsimulation rabfibr 5 EU countries.
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1. Introduction

Population-based dynamic microsimulation models @n@grams that are used to
forecast populations into the future and to asdbssimpact of economic and
demographic change on public policy. In particdtegse models have been used to
analyse existing policy and to design policy refsriminter-temporal policies such as
education, pensions, long-term care and spatiaypol

The objective of this modelling framework is to anporate the time dimension into
policy analysis. Using models based on cross-sectada simply allows one to look
at the effect of policy at one point in time. Usitrgss-sectional data one is limited in
the simulation of policy instruments which depemdinter-temporal factors such as
pensions. A dynamic microsimulation life cycle mbdkows one to examine policy
over time; for example life course redistributiofgrecasts of cross-sectional
redistribution and the simulation of pensions. Vsalibe an innovative computing
framework used to create dynamic microsimulatiordei®.
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Designing dynamic microsimulation models is a lang®del building project
involving many disciplines such as economics, dquidicy, statistics and computer
science. This paper describes a mechanism for mattymamic microsimulation
models easier to construct, using a generalisethadetin particular we describe a
number of applications of LIAM.

The paper is designed as follows. Section 2 de=stihe objectives of the paper, with
section 3 describing the main model features. 8Seeatioverviews the different types
of process modules, while section 5 discusses rakgn. Section 6 discusses some
efficiency features. Section 7 describes some efithplementations of LIAM and
section 8 concludes.

2.  Objectives

The construction of a dynamic model is a very la@agk, both in terms of grasping
the types and forms of behaviour that take placer avlifetime and the effort in
programming 1000's of lines of code.

Despite dynamic microsimulation modelling (DMM) ascience having existed since
the 1970's (see Orcultt et al.), the field has meggd only slightly (See O’'Donoghue
2001). Part of the reason has been the resourgegaments. When DMM's were

first developed, they were in fact advances in as@pscience as well as being
advances in social science methodology. Likewiseamy countries, data limitations

have prevented the development.

However in recent years, both difficulties have ro@¥ercome as computers have
increased in speed and thus allowing for very pawenodels to be constructed on
PC's. The establishment of household panel datasetsny countries, for example
the European Community Household Panel Survey,Bhiésh Household Panel
Survey and the German Socio-Economic Panel andnireasing availability of
administrative datasets has removed the barrietht estimation of dynamic
behavioural processes.

However despite these advances, the spread of &1 Dechnology and the
development of the field has been relatively sldlwe models that are being used at
present are not doing very much more than the DYINASIodel in the late 1970’s.
A large potential reason is the apparent benefdost ratio. Many institutions when
faced with the large cost of developing a dynamadei felt the money better spent
on other techniques.

One significant contributor to the cost of devel@minis the cost in actually
producing the computing environment of the modekcd&ise the computing
necessary to produce a dynamic microsimulation misde complicated, computing
development has often taken precedence over demglopetter behavioural
equations. It is therefore important to focus orysvaf reducing the cost of building
this initial framework.

O’Donoghue (2001) surveys the dynamic microsimatatmodels that have been
constructed, describing in particular the desigaiads that have been faced. While
most models have been built as stand-alone effartajmber of attempts have been
made to avoid the start-up costs and learning cuneiilding the model by utilising



the same framework for alternative applicationseréhwere some efforts in the
1970’s to write actual microsimulation computer ta@ire packages. However
because of the complexity of the system to be sited| users have more specialist
requirements than these software packages alléwdthough not designed with
objective of constructing multiple dynamic microsilation models, the code from
CORSIM model (See Caldwell, 1996) has been strigimedh and used as a template
in the construction of the Canadian DYNACAN, Swad®VERIGE and for the US
Social Security Administration models. There haeerbfour examples of programs
that have been written explicitly for multiple Dyna& microsimulation model
construction, ModGen (Wolfson and Rowe, 1998), UMDBSauerbier, 2002),
GENESIS (Edwards, 2004) and LIAM described here.d@en is a computer
language designed for create microsimulation modets has been used to create a
number of microsimulation models (dynamic and sejatwvithin the Canadian
government such as Lifepaths. MODGEN is an openemnatiile LIAM is a closed
model and the spouses in LIAM come from within tHataset. UMDBS is a
simulation system developed at Darmstadt Univewmstpart of academic research. It
is implemented in the object oriented language Baflaland its main applications are
socio-economic investigations. GENESIS is a SASthasodelling framework being
used within the UK Department of Work and Pensiansreate the Pensim2 pension
age dynamic microsimulation model and the statesipenforecasting model. While
LIAM is fully accessible to researchers, GENESIQ&isinternal government model
currently not accessible to researchers.

In this paper we describe the LIAM framework, whialas developed ironically
because of the low resources available to the authmamic models have typically
been constructed by governmental institutions (MB3$A SESIM, DYNACAN,
PENSIM2) or by major research grants (SVERIGE, DY, POPSIM), although
a number of models have been constructed as p&hb§& (Harding, Baldini). Not
being funded by a major research grant or by amowent institution LIAM falls into
the latter “low budget” category, being developeidtially as part of a PhD and
latterly expanded with small research grants arti Wie assistance of a number of
PhD students. As a result, LIAM has necessarilpgdess ambitious at the outset.
However despite these shortcomings, it is hopetwita improved data and funding
availability that LIAM can be improved in the fuaur Therefore the objective of
LIAM is to construct a program which although redaty basic initially is not
constrained from adapted for future uses, essintiak been future proofed to allow
for future enhancements.

While the initial application of LIAM was to devglaa single cohort analysis of life-
course the redistributive impact of the Irish TasrBfit system using relatively
unsophisticated data and behavioural equationsrdeauof subsequent developments
(described in more detail below) have occurred saglmproved data (2-8 years in
the panel data underlying the behavioural estimajiothe addition of a graphical
user interface, the move to a multi-cohort popofat model, international
comparisons and the use for alternative policy yaesl such as spatial and indirect
taxation. Future developments that are plannedudeclimproving the behavioural
equations to respond to changes in the policy enment such as labour supply
retirement and migration.

2 See Leombruni and Richiardi, 2005 (2005) for tedopment of a model using Agent Based
Modelling



It is not possible to foresee the problems involiredevelopments in these areas in
advance. However in order not to allow current tanons to inhibit future
developments of the program, careful thought iessary in the design of a flexible
modelling framework. There are a number of feattines would be desirable in such
a framework to be able to meet these objectivaisariuture.

. In order to be able to deal with new datasets wiahbe, using different sets of
variables should not be a problem.

. It should be easy to incorporate new behavioufalimation in the framework.

. Need to be able to run on a personal computer ustinigdard “inexpensive”
software.

. It should be straightforward to make changes to ehagding the framework
even if the model has not been used for a periotinted or is to be used by
multiple analysts. This implies transparency in dperation of the framework
and also flexibility in the way in which behaviooan be incorporated in the
model.

. These points also imply that the framework sho@ddbust to changes desired.

. Speed may not be considered a priority initiallyf despite computing time
decreasing with the availability of cheaper andeiasomputers, demand has
increased at a faster rate. Efficiency improvenediscussed below.

. The objective of this modelling framework is tocall the user to focus more on
the estimation of behavioural equations rather tanputing issues.

. The modelling framework should also allow feedbatfiects of policy reforms
to be examined.

3. Framework Features

In this section we describe the main aspects oM,lfocusing initially on the general
structure of the framework and then elaboratingdaia structure and issues relating
to modularisation and parameterisation.

Structure of Framework

A dynamic microsimulation model is essentially ad®lothat takes individual objects
(individuals, households, farms, companies) andikitas the probabilities of various
events occurring at various points in tifeigure 1 describes the main operations of
the ageing component of dynamic microsimulation eioHere the operation of one
particular ageing module at one point in time iaraied. In the model itself, this
process would occur on a number of occasions abealindividuals in the database
would pass through many ageing modules at each jpaiime.

® Dynamic events may of course occur at the sanme jrotime as other events



Data for each person are firstly taken from theablase having been transformed into
the model data-structure, which is described inardetail below. The individual is
then passed through each ageing module in turn.agkeng modules to be used are
specified as part of a parameter list, which alldws order and the types of the
transition processes to be varied. Input paramébersach ageing module are stored
in Microsoft EXCEL spreadsheets (XL) and are adbéssy the front end. Output
from each ageing module is stored in alignmentagg@rmatrices in memory. For
example, alignment regressions produce a detericidiemponent XB to which is
added a stochastic componentThese are stored in a dynamic data structure and
ranked with the highest Z percent of values takemfthe exogenous totals in the
alignment process. If the ageing module is a ttenmsbetween states, then the output
will be a probability, otherwise if the ageing mdeluis a transition between
continuous amounts like for example incomes, thputus a real variable. When all
individuals have been passed through the parti@damg module, alignment occurs
(see section 5 below for a description). This eesuhat aggregates from the micro
model match macro aggregates. Finally if a varidbteany individual changes then
this change is registered in the databafke rest of the paper will describe in more
detail the operations of each of the componentsritesl here.

Data and Framework Data Structure

In this section we describe how data is handledlAM. We describe the database
used, how data is stored within the framework,dhta structure. The data structure
or format of the data is very important as it det@es to a large extent the amount of
memory required to store the data, which in tuftuénces the speed at which the
model can run. It also has important consequerarehé flexibility of the model.

Turning first to data storage, we adopt a relafiodatabase structure due to
organisation and memory handling advantages. ldgta and outputted data is stored
in ASCII format.

Figure 2 describes the data-structure used by LISMucturally the data is stored in
a hierarchy of object types (tobjt) such as persmnsehold, firm eté.Each of these
object types themselves consists of a number octdj(tobj) such as the actual
incidence of a person or household. Events (tvauth as births, tenure status or
identification number then occur to objects. Easlen¢é can have a number of
incidences or values (tval).

We exploit the hierarchical nature of relationatatiases making data storage event
driven. Storing model output as consecutive cressiens would result in severe
inefficiencies, as each variable would be storedefxh output period, so for example
the gender would be stored for each point in tiMaking data storage event driven,
new data is stored only when a new event occurglarglthe data changes. Gender is
therefore only stored at birth. One can make diggniit savings in memory as a result.
Each individual variable however requires more iimfation than in the case of the

* Note by the term database, we refer to both tlysiphl relational database, stored on the hardidisk
ASCII and the virtual database we create in memory.

® In cross-sectional data structures, persons amsidered at a sub-level to households. However
because persons can be members of a number ofediffaouseholds over time, this relationship
breaks down. In the data-structure persons areidemesl one set of objects and households another,
where the ID’s of the member individuals of a hdwgdd are events that can occur to households.



cross-section data structure. For each event nesessary to know what event
occurred (tvarl), when it occurred (tval.evtimendathe value of the event
(tval.amountf’

There are a number of ways in which data can bredtwithin LIAM itself during the
simulation. If the model were open as in the casthe DEMOGEN or LifePaths
models in Canada where new spouses are generattéebtsgally when needed, then
all of each individual's transitions could be siatell independently of other
individuals. Thus each individual could be readhfrthe database, simulate their life
course and store in the database one at a timeMLhdwever uses a closed
methodology where individual behaviour can be ddpahon the characteristics and
behaviour of other members of the sample. Alignmsrdan example, whereby the
employment of an individual is not independent loé rest of the population, but
depends upon the interaction of the market. Utiljsa closed model means that
except for new births or immigrants, no new indiats are generated. Marriages for
example link individuals already in the databadas ethod is more straightforward
to interpret as it mirrors the actual populatiomneTmodel is not solely individual
based (it is a multilevel model — Regions, Countidstricts, Households and Person)
as many operations in the model depend on othevidu@ls such as the marriage
market, processes which depend on spousal infasmaitnd alignment routines (see
below for a description). A side effect of this tizat it is necessary to store all
individuals in memory during the simulation. Thetval database stored in memory
during the operation of the program mimics the citrre of the relational database
stored on the hard disk.

Once the data has been read from the databaseémmwry, LIAM runs through each
object type (person, family etc.) in turn simulgtithe life course events desired for
each object of that type. Simulation processesham@fore object type specific.

Typically variables which are components of the dehwold data structure are
declared in long lists within a dynamic model. Thegty be initialised elsewhere and
have other operations carried out in other partshef program. As the modelling
framework is so large and complicated, it may Wécdit to keep track of all the
places in LIAM which need to be altered when a wawable is included. Therefore,
in order to keep the framework flexible and yet mi@in the robustness, it is desirable
that the number of alterations necessary is kept tanimum. As a result instead of
declaring variables within LIAM, we declare thet lef variables to be used separately
in a parameter sheet (dyvardesc).LIAM then crespese for the variable, initialises
the data and carries out all necessary transfoomatand operations automatically
and therefore is entirely flexible with regard tetset of variables used within the
framework. Thus if the user wishes to introduceeav nnstrument with an output
variable such as health status, then the user ging@ds to introduce the variable into
the parameter sheet and LIAM will do the necess&eps, without having to recode
the framework. Another advantage of the flexibleldeation of variables described is
that because variables are stored in vectors, newpasite variables can be produced
easily. For example, a complex variable like digids income which is not
simulated directly can be generated from the vedfoits components such as
employment income and capital income.

® Another means of reduce storage space is to seiables as integers rather than as real numbers.
Therefore when storing output, variables are firgttiplied by 100 and then truncated.



Another important advantage of the hierarchicalhoétof data storage is the ease in
which duration information can be accessed. Asdidite and value of each event is
stored it is possible to determine such informaasrduration, duration in the last 12
months, date an event first occurred, date an earaed, duration in a particular state
and so on. Information of this kind is frequentbguired by tax-benefit systems and
other policy analysis. Additionally it is easy tocass previous values of an event
such as previous earnings etc.

Population versus Cohort

The initial database depends on the purpose ofsimeilation. One of the key
differences in the literature is the distinctionvieen longitudinal or single cohort
models and population or cross-section/multi-cohonbdels. However, this
distinction is now largely redundant due to advanite computing power. From a
computing perspective, a cohort can simply be sesean initial sample of unrelated
individuals aged 0, while the population containrsample of individuals of different
ages, some of whom are related. As a result, asidacabout this does not have to be
made about this, as the computing framework has loeseloped to handle both
types of analysis. Running LIAM as a dynamic popata model requires that the
initial cross-section is stored in the required m&n while running the model as a
dynamic cohort model requires the model to firstegate an initial cohort.

Modularisation

The use of modularisation is an important technitdpae helps achieve the objectives
of flexibility, transparency and robustness thaAMl requires. Modularisation means
that components within the LIAM are designed todseautonomous as possible.
Modules are the components where calculations fadkee, each with its own
parameters, variable definitions and self contaisgdcture with fixed inputs and
outputs. The result is a set of independent compisribat do not interact with each
other directly, allowing the framework to operate @ collection of independent
building blocks. Because each process module isegnself contained, each can be
run independently, left out or new modules includédnstructing a program in this
way allows for the model to be easily expanded ¢aldvith new behavioural
equations or functions. Also because it allows tiser to focus on individual
components one at a time, without interaction \ihign rest of the program, the model
becomes more robust.

Linkages

Many policy instruments depend upon multiple umtsanalysis. So for example,

pensions may depend upon individual characteristich as contribution histories,
age etc., taxation may depend upon family chanaties such as both spouse’s
incomes and social protection instruments and wnelfaeasures on the household
unit. Similarly sociological analyses and long-tecare analysis may depend upon
wider kinship networks. These linkages are notctyrihierarchical (e.g. region,

household, family, individual), they may in factnsist of a web of linkages (e.g.

region, firm, household, family, individual, mothé&ather, partner, children etc.). This
multi-level structure with its complex interactiohstween levels is one of the main
complications of microsimulation models that makaelifficult to use person-based

modelling frameworks. While it is not infeasible samulate using non-hierarchical

linkages such as those between relatives acrosseholds using other software



packages such as social simulation and statispeakages, the non-hierarchical
structure often requires one to be "creative" insigiing the model due to
inflexibilities in the model as they are often nstandard requirements. However
specially designed microsimulation packages such.la8l can have these data
structures in-built improving the transparency athekibility of the modelling
environment.

In the LIAM framework, the mechanism of linking ebjs has been automated as a
relational database. Potentially any object calinked to an object of either the same
or different object type. For example individualsabject type person (p) will be
linked to their household of object type (h), whiteturn the household is linked with
the individuals in the household. So therefore reate the number of persons in a
household, this process is carried out at the middevel. This new household level
variable npers can be accessed by individual psesesising the prefix h_npers.
Similarly we can have linkages between objects i same type, accessing a
mother’s information, say education level using dieeel or father's f_edlevél.

In the initial framework, there are no predefingdkéges as the objects can be of any
type defined by the user. The user pre-definebnédhges using the parameterisation
described below to essentially create a web ofalja@ls between objects; essentially
defining keys to link tables. As long as the natof¢he linkage is defined, it is then
possible at any level of the model to access inétion from another level. This is
quite a powerful feature of the data-structurergaboth time and memory. In the
absence of these linkages, a h_npers, a new prooesd have to be simulated which
would store this variable as a person level vagigblhnpers (say), which is analgous
to a flat file, where household level variables stared at the person level. The use of
linkages or keys provides the space saving advastaf a relational database and
avoids the simulation of an extra process to cdntrer household variable to the
person level.

New Objects and Killing Objects

While creating a new object (person, family, houdéhenterprise) is itself not a very
complicated task, creating space and assigninglimiefault values, creating a new
object to mimic the birth of a new person is rativere complicated. As a result we
have had to develop a specific as opposed to gemew _birth function. The
assignment of variable values such as single, age, zno education etc is
straightforward. However it is also desirable tiinat new child inherits the linkages of
the parent. So for example the partner (if anythef mother at birth becomes the
father, similarly the children of the mother becosiblings and the hierarchical
linkages such as household, family, region etdefrhother are also inherited by the
child.

Analogously, “killing” a person is also more diffic that killing an object. The
individual needs to be extracted from the web atkip networks and other linkages
of which they form part. Similarly the process & mdependent of the characteristics
of other objects. The number of persons in a haldetecreases by one, the spouse
becomes a widow. Bequest of accumulated wealth meay to be transferred and in
the case of pensions systems, contributions otlengnts may need to be transferred

" Prefixes are defined by the user.



to surviving dependants. Again the possible complexf the operation is far too
difficult to generalise and so again a specifidireeihas been required

Migration

Migration is another complex operation. From thepof view of LIAM, emigration
is analogous to killing someone as in a nationatiehowe do not track individuals
while they are abroatlA variation of the pageant algorithm (See Chénaaf)0) is
used to ensure that the migration of family undsuits in national individual level
aggregates being achieved.

Immigration however is a more difficult situatioAn immigrant differs from a new
birth in that they have an accumulated set of datarstics and potentially is
accompanied by other family members. One solut®roi simulate the range of
characteristics of new immigrants on arrival. Hoerethe range of characteristics is
very broad and variable and so it would be verjialift to retain the correct multi-
dimensional distribution of characteristics. To iavithis problem we sample (with
replacement) from a set of immigrant householdféndata. Thus whenever we need
an immigrant household we simply select a “realitéddependent) family with actual
characteristics of a new immigrant family. In aduit to preserving the multi-
dimensional distribution, it saves substantial catimg time in having to simulate all
the individual characteristics.

Parameterisation

In order that modules and other components of Liéa be changed with ease, it is
necessary to store model parameters externallyvi&oe possible no parameters are
hard coded within the framework. Figure 3 detdils set of parameters used by the
modelling framework. The sets of parameters, reiasg theflow of controlin the
model, are in some sense hierarchical.

At the top level we havdyrunsetparameters which contain the parameters necessary
to run the model, detailing directories (locatidnrgput and output files), time period

to be run etc. Figure 3 is divided in two by dashees indicating sets of parameters
dealing with the data structure and sets of pararsalealing with the simulation
process.

On the data side the highest level parametersar@ioed inobjtype This file tells
the model how many object types there are (redgionisehold, person etc.). LIAM
creates each object type based upon the list dkfiree and assigns defined prefixes
(r,h,p etc.). The framework then looks for filgsjtype xcontaining the incidences of
each of the object types (r, h, p, etc.) whichumtcontains in the identification
numbers or id’s of each object of that particulajeot type. So objtype_p would
contain the set of id’s of all persons.

Related to the set of object types is a set ofalsdes associated with each type in the
dyvardesdile.? In this file, all variables used in LIAM are dexd and described. It

8 Technically as pension rights can be accumulatedseas, one may need to simulate their life-
histories while overseas, but this has been beffomndapacity of any existing model.
° In the front end, the parameter files have eqaivaimenus.



is in essence a data dictionary for the model. Tilescontains information on the
following attributes of each variable:

. variable name
. variable type (binary, multi-category, continuous)

. an income variable (monetary amount that can beec&dd other monetary
amounts, for example it prevents adding gendentpl@yment)

. limits of the variable (upper and lower bounds)debugging and validation

. a categorical variables (if so how many categaaies the list of categories — for
tabulation purposes),

. is to be updated during the simulation (to accdaninflation)
. default values to be taken by new persons
. data description (describes variable names)

Associated with each variable, there is a dataetadintaining information about
object associated with the variable (who), the ttheeevent occurred (when) and the
value of the variable (what).

While each data table within an object type iséidlby the key or object ID, we need
further information to link objects of the sameather type. Thdinkage parameters
define the set of possible links between objeck® Uiser needs to define a name for
the linkage (ph — person to household, hp — houdebagoerson etc.) and equivalent
origin (p for link ph) and destination (h for link) types. These linkages between
objects are stored in the linkage filek_xy. Subsequently, for each linkage listed in
link_xy, LIAM pairs the relevant origin objects ¢e children) and destination objects
(e.g. parents) and stores the resulting origindeslination IDs in a link-specific (e.g.
pc) file.

We now consider the set of parameters that defieesimulation processes. The
highest level is theagespine orprocess spine/list. In any simulation there is an
implicit ordering, and events are triggered througinditions. The process spine
contains the list of modules to be run in the dylwamodel, so that by varying the
order of the modules and varying the content ofligte one can vary the types of
processes that can be run in the model. This featuploits the modularisation,
where because each process is seen as a sepalditegtblock, the number, type and
order of processes can vary without having to chatig code. Each process or
module has a corresponding parameter sheet in dhemeter file “Transitions”.
These parameter files tell the model the outputbées of each process, what type of
process (described in the next section), wheth@peess needs to be aligned and the
actual process parameters themselves such asatfsition rates, regression equation
and policy rules etc. If a particular process ibéoaligned, then LIAM will look for
an appropriate set alignmentparameters. Sometimes individual parameters may be
required to be changed between runs without anpgehdo the set of processes. A
reform to a pension simulation module where thdéamgnent rate was changed is an



example. Thepolparam parameter set contains information associated wébh
parameter for each possible “system”, where théesyd4o be run is defined in the
dyrunsetparameters.

4. Process M odules

This section describes the main process typescrabe used by LIAM. This refers
to the collection of operations that are simulaiadbjects during a simulation. These
include demographic processes such as birth, ngerridaving children and death,
education, labour market processes such as emphdyar@ unemployment, the
simulation of incomes and interactions with the lb@xefit system.

In order to aid flexibility, we classify processasder a number of headings. In this
way, instead of programming each module separatedyonly need to program the

module type once. In order to run a module, we thrdg need a module name (which

is included in the process spine), a module typdet@rmine which program to run

and a set of parameters which is fixed for evencess type. At present there are 6
module types:

transition matrices, in the form of a log linearaeb(rap)

. transformationstfan)

. regressions, both with continuous and limited depenvariablerggr)
. macro alignment (discussed in sectionrba¢ro

. marriage marketnimkj

«  tax-benefit systei (th)

The first component of a parameter file containgmitkeabout what conditions need to
hold for the process to be run. At each pointnmeti each individual is passed through
the module. If the conditions hold, then the modtaéulations are carried out and
the output passed to the alignment component ofirtbdule. The output for each

individual is stored until all individuals have padl through the module. The
alignment component then ensures that the aggregatgespond with external

control totals.

Transition Matrices

One of the most important processes in a dynamideiis the transition between
different discrete states. Transition Matrices aften used to perform these
operations. They specify the probability for aniundual of particular circumstances
to move from state A to state B. In this framewdrknsition matrices can be stored
as log-linear models (See Dobson, 1990). In thig trensition rates are decomposed
into average and relative transition rates. In Wy extra-relative transition rates can

19 The tax-benefit system is in fact a collectiomuddules. We have linked the dynamic model to the
EUROMOD EU15 tax-benefit model and to other taxéfgmoutines.



be added with ease. For example, if a mortality cat average fell by 0.1% every 10
years, then a relative probability time dependemameter Of 0.999 could be added.
Similarly it also allows the model builder to comeéiinformation from different
sources. So for example we combine actual age-gespzific mortality rates for
1991 taken from life-tables and use relative maytahtes taken from (Nolan, 1990)
that incorporate socio-economic relative mortaléties.

Regressions

The second type of transition process used arethased upon standard regression
models. At present, this type of module allows foynes of dependent variable

. standard continuous dependent variable

. log dependent variable, allowing for use of the hagmal distribution.
. logit discrete choice dependent variable

. probit discrete choice dependent variable

Any variable in the model can be used as a depéndeiable and any variable can
be used as an explanatory variable. The error tanmalso vary. The default error
term takes a normal distribution with independestuibances. LIAM also allows for
the error term to be decomposed into individualcsjge (u,) random effects and
general error components,{v(See Pudney 1992). However more complicated error
decompositions are also possible. This allows sdewree of heterogeneity to be
assigned specifically to individuals. So for exaenph determining earnings, the
individual specific error may represent some défere in innate ability, while the
general error term represents random variation bwer. Breaking up the variation in
this manner will tend to reduce within lifetime iaon and prevent to some degree
the existence of very unusual life paths.

In this framework, transitions occur at discretediintervals because of the weakness
of the data and because of the desire to be aldégio the data® As Galler (1997)
points out some statistical difficulties relatimgythe use of discrete time models, it is
desirable to use short term discrete time periods s a month. As the computing
requirements can be substantial for monthly sinmiat LIAM is sufficiently flexible

to allow the user as the ability to specify thediperiod to be used and so monthly or
annual periods can be simulated.

Transformations

While regression models and transition matricesstwehastic processes, involving a
random component, some processes are determiritstanples include age, which
depends on the date of birth, widowhood, which ddpeon the death of a spouse and
so on. Likewise if an individual moves from yeam6education to year 7, years of

1 O'Donoghue (2001) describes some of the advantagésiisadvantages of continuous time versus
discrete time.



education increase by 1. This component has alsen bparameterised as
transformations.

Within the transformations there are two types efedministic transformatiogen
and fgen The gen functions are of simpler types, utilising a ca#tidn routines
combining sets of variables using standard opersifoThe fgen set of functions is
where we program ad-hoc programs. It is where weef@mmple we exploit the
relational database structure of the data in ojpermssuch as the number of persons in
a household, where the function counts the numbebjects of type person linked to
the object household as defined by the link_hp filkk Similarly it is where ad-hoc
functions such asmew_birth and killperson are defined. Whilggen functions and
predefinedfgen functions are pre-coded and parameterised sondat users can
employ them, nevigenfunctions such as the pension system of a newtgooeed to
be programmed by the user if the existing functibpdoes not allow it.

Marriage Market

If an individual is selected to marry or form atparship then, a process is needed to
determine which spouse they will take. The procased here is to take the
characteristics of the individual chosen to marnd ahe characteristics of each
possible spouse and determine the likelihood ofatcim Similar to the method used
in other models such as the CORSIM model, thisoisedusing a logit model that
estimates the probability of marriage between paliiadividuals. The parameter file
therefore is identical to that used in the regmsgrocess type. The module itself
forms a matrix of the characteristics of the n naeal n women selected to marry.
Estimates a probability for each pair and assigmea#ch to the couples with the
highest probability of marrying.

Bouffard et al (2001) has identified some problecahtissues associated with the
marriage market, in particular with strange matab&surring amongst the last people
to be married in a particular simulation. In orderavoid these issues, we allow the
user to create a super-set of potential male partise that rather the last female in
the marriage pool to be select an unlikely matblereé are a number of males to
choose from. In addition we employ the Order of ieasing Differences algorithm of
Howard Redway at the DWP, which creates a meaduheaistance of an individual
from the centre of the population (or the averdggracteristic of the population) and
selects the females with the most unusual charsittsy who are likely to be the
most difficult to match, to be matched first. Tlgit is that those in the centre of the
data “average people” are more likely to find a djonatch than someone at the
extremes.

Policy Processes

The fourth process type is the simulation of thelianefit system. Here we describe
how it is implemented in the program. Again, tceraphasise the desire to reuse code
wherever possible and to avoid duplication, the amyic framework is flexible
enough to link with other specialist programs sashax-benefit models. Tax-benefit
routines from other models such as EUROMOD candaentessly accessed by this
model and thus can be used as module componetite diynamic model.

244 % 1 max,min, A, ()}



Behavioural Response

A desirable feature often ignored in dynamic migragation models is the ability to
include feedback loops so that behaviour can respgonchanges in public policy.
This is a criticism made by PRIM (1997), is thahdsnic models are insufficiently
flexible to incorporate the demands of behaviouesponse. In order to be able to
simulate behaviour, typically the model needs toabke to call a policy simulation
routine a number of times to quantify the finanemapact of alternative choices on
the decision in questions such as the choice tk worretire etc. In O’Donoghue
(2000) we implemented a simple labour supply mededre labour supply depend on
tax-benefit policy, the tax-benefit system. Thetwafe framework has been designed
to be able to incorporate feedback loops. The @egfenodularisation that exists in
the framework allows any number or order of moduéebe run and for modules to
be able to be run a number of times.

Thus for example in order to have labour supplyetiejon tax-benefit policy, the tax-
benefit system will need to be run once as an ingotthe labour supply module and
again once labour supply has been determined, tares benefits need to be
calculated again on the resulting behavioural datisin O’Donoghue (2000), the
model used the tax-benefit system as an input detmsions to work, decisions to
seek part-time employment versus full-time employmand to become self-
employed. The tax-benefit system therefore needdzetrun 5 times to examine the
impact of the system on the choice faced by arviddal. When there are more that 1
adult in the household, because behaviour of sgocae depend on each other, the
tax-benefit system needs to be simulated 17 tisheteisions for each, plus one run
on the basis of resulting behaviour). As a resutbrporating behavioural response
can be computationally expensive.

Other possible behavioural routines that couldrmuded are retirement decisions,
consumption and benefit take-up. Although compotetily expensive, the
framework is sufficiently flexible should the usemquire and the computing power
becomes available.

Robustness

Finally in order to avoid robustness problems daentodules being incorrectly
specified, the model contains a debug device wlidures that all inputs required by
a module are actually available (i.e. have eitregrbgenerated in the model or read
from the database) before each module can be run.

5.  Alignment

The section describes the alignment function caethiin LIAM. The objective of
alignment is to ensure that output aggregates neatighinal control totals. The reason
this is done is that micro behaviour (both socrad aconomic) is extremely complex
and micro-theory being limited, cannot predict aately all the variability of the
system (in this case the life paths of individuals)addition, a household model only
makes forecasts about a small part of the econardylargely ignores interactions
with the rest of the world economy. Also, data tak@m relatively short periods of
time may not fully reflect the dynamics within theusehold sector over time. As a



result dynamic micro-models may not be able foreaggregate characteristics of the
population well.

In the discrete choice models, the output for @adtvidual is a probability. In order
to use these models for predictive purposes, asidecrule is necessary. In other
words, what forecasted probability or higher wiibguce an event. In order to predict
a state with a logit (or probit model), one drawsramdom number uniformly

distributed numbeu, . Whenu, <logit™(a + BX;) (or u, < probit™(a + X, )), then a
state is predicted to occur.

Another use of alignment is in correcting for potidie failures of econometric
models. For example when using discrete choice tmosiéch as logit or probit
models, often, the predictive power is poor. Dunaad Weeks, (2000) highlight that
“even in functionally well-specified models, theegictive performance is poor,
particularly where some states are relatively dénse sparsely represented in the
data”.'® Thus the further the probability of an event ocag is from 0.5, the less
effective these decision rules are at producingdigred result. As a result models
may under or over predict the number of eventstoBexample if 5% of individuals
of individuals should have the event, then the tlagbdel may not necessarily
produce 5% of events. Alignment will however coastrthe event to occur to 5% of
individuals. This is effectively a calibration mertism and will produce the correct
proportion of events. Care must be however takdtsinose as it may disguise errors
in the model specification.

The types of control totals that would be usedignéo include:

. The aggregate proportion/number in a state or ngobetween states.
. The average event value.

. The distribution of values.

. The average growth rate in the value of an event.

In this paper we shall deal specifically with timstftype

A simple analogy about the relationship betweegnatient and the process modules
is that the process modules such as logit modelduge a ranking variable, while the
alignment mechanism selects the number of tramsitidcor example, in our
econometric model we may have an equation of thbatility of dying as described
in equation (1), that depends on age, gender amthehan individual is disabled or
not. Assuming that disabled people have a highetatity rate, then given the same
age and gender and distribution, as expressed é\sttichastic componeft the

mortality distribution for disabled people will igher.

logistic(p,) = a + B, x Disabled + 3, x Age + 1)
B, xGender + 3, x Disabled x Ageg + ¢,

3 The reason for this according to Greene (199has “the maximum likelihood estimator is not
chosen to maximise a fitting criterion based ordfmt&on of y, as it is in the classical regressfosich
maximises R). It is chosen to maximise the joint density af tihserved dependent variable.



The deterministic component of the model will résual those with a higher risk,
having a better chance of the event occurring, evttie stochastic part will ensure
that there is some variability (so that not onlggé with high risk are selected). This
model therefore produces the risk of dying.

In order to select the number of people that die,use the alignment probabilities.
Firstly individuals are grouped into the appromiaige and gender groups. As
everyone in the relevant group will have the sage, gender and occupation, they
only differ by the deterministic component for dikad people
B, x Disabled + 3, x Disabled x Ageand the stochastic component The object then

is to select to die, the people in the group wihih highest probabilities of dying. As
B,is positive, proportionally more disabled will digan non-disabled. As a result we

see that the output of the model equation is usedrik the individuals to whom the
event occurs, but to leave the decision to thenalignt process.

Implementation

In this section we describe a practical methodrémking individuals for alignment.
We take as our reference point a logistic model:

P :|09it_1(a+ﬁxi +&) (2)

Utilising the modellogistic(p*;) =a + BX; will result in those with the highest risk

always being selected for the event. So for exanmptaur example given above, the
disabled, all other things being equal would beded to have a die. In reality those
with the highest risk will on average be selectearenthan those with lower risk,

rather than simply selected those with the highiskt As a result some variability

needs to be introduced.

Models based on the CORSIM framework such as theNAFAN model (See
Chénard, 2000) utilise the following method. Fystlpredicted probability is

produced using our econometric moded*, =logit™(a+ X, . Next, a random
number u,, is drawn taken from a uniform distribution, isbsacted from the
predicted probability,p*,, to produce a ranking variabte= p*, —u,. This value is
then used to rank individuals so that the top x%abfies are selected.

A concern about this method is that the range abkide ranking values is not the
same for each point. In other words, because thmelora numberu O [0]1]is

subtracted from the deterministically predictgaf, , then the ranking value takes the
range r, J[— 11] However the ranking value for each individual lvahly take a
possible range, O[u, —1,u, .]So for example ifp*, is small say = 0.1, the range of
possible ranking values is [-0.9, 0.1]. At the otBrtreme if p*, is large say = 0.9,

then the range of possible ranking values is [-0.2]. Thus because there is only a
small over lap for these extreme points, even Weay low random variable is
selected, then an individual with a smalt; will have a very low chance of being

selected.



Ideally the range of possible ranking values shdwédthe same, so that for each
individual, r, O[a,b], with individuals with a low p*, being clustered towards the

bottom and those with a higp*; being clustered towards the top.

We now consider an alternative method. This mettadages a predicted logistic
variable:logit(p,) = a + BX;. Next, a random number is drawn taken from tlygstac

distribution ¢, . This is added to the prediction of thegit(p,) =a + BX; to produce
logit(p,) +& . The resulting inverse logitp, =logit™(a + BX, +& s then used to
rank individuals and similarly the top x% of houskls are selected.

The rank produced by the two methods is not theesdarhe second method will be
more likely to select cases at extreme points thanfirst, while first method will
select more points with central values pf, .

Macro Alignment.

There are a number of levels at which alignment cacur. At the lowest level,
alignment refers to the decision rule used in ardie choice model. At the next level,
described above in our mortality example, whicltatled the meso-level, concerns
the idea that the aggregates for particular grofupsthis case gender, age and
occupation) should match the external totals. Meset} alignment and the use of
alignment as a decision rule can however be cordliimte one stage.

Sometimes the desired targets are narrower thaaligmement targets we use. In our
mortality alignment example, we align mortality age, gender and occupation. We
include occupation in the alignment because theumational structure is very
important for other characteristics in the modedwdver if say one of the core targets
in the model is to achieve the mortality distriloatisupplied by external sources such
as official population projections, which may oridg by age and gender, then our
meso-alignment may produce different aggregatess. il happen if our underlying
occupation distribution is different to the one Irop in the official forecasts. It may
therefore be desirable to adjust the results agaathieve these targets. This process
is known as macro alignment. In the applicationthef framework used in this thesis,
an example of meso alignment is the simulationrafditions between employment
states. Macro alignment is then used to constratal temployment rates. See
Appendix 1for the steps involved in the macro alignment pesc

Behavioural Change.

Handling behavioural interactions in the model sy from alternative scenarios is
another issue one needs to consider when decidiag @lignment strategy.

One potential solution is to examine the average-§ignment) event value such as
the average transition rate or average earningthenbaseline scenario with the
average in the alternative scenario. One potentiethod is to increase alignment
values by proportional difference. This is a methttised in some dynamic models.



This however assumes that all processesiacenstrainedThis may be the case for

example with the mortality rate. One may expect #maexogenous increase in human
capital will reduce total mortality rates and tharse can shift down in the alignment
totals is appropriate.

Some processes face market or other instituticoaktraints issues that are only
partially simulated in the model. An example ighe labour market such as the case
where there is a behavioural change in labour @paiion in response to a tax
change. If labour supply increases, then wagesavalil and employment increase.
This is similar to shifting the alignment probatids. However one would have to
shift earnings as well. However due to rigiditiesthe labour market, this may not
necessarily happen. Labour Demand may be fixeahich cane we may just simply
see that as more women supply labour, they simgbjace people in the labour
market who are less “employable”. This is similambt shifting alignment at all. In
cases where there are market interactions sudtisasttmay be useful to incorporate
a model of the market that would inform the resgooisalignment totals to economic
and demographic totals.

At present the framework makes no explicit incogpion of behavioural change in
the alignment structure. Future work on macro-mlorkages will attempt to address
this.

6. Efficiency

In earlier versions of the framework, developméntaised on functionality and not
speed. So for each process the model passes thatiibk objects of the object type,
checks to see if a condition is true and if truerfgrms the calculatioh(XS + &)

and if necessary uses alignment to produce thagbeedvalue of the process. In this
section we describe a number of efficiency improgets that have been made
recently.

One of the speed advances relies on the fact tbat processes are relatively stable
and so do not change much year on year. Becauiesofeligibility conditions are
unlikely to change much year on year. For examptddne parent births, the model
used to check to see if an object is a femaleesipgrson of child bearing age. It does
this for each year and for every person and wasettwe very inefficient. Gender
doesn’'t change and so it is inefficient to checksée if a male can have a child,
Marital status only change infrequently and so t¢bedition does not need to be
recalculated each year. Similarly the age rangelition only changes twice over the
lifetime. One immediate speed improvement was toutae the conditions for all
people in the first year of the simulation and otdyrecalculate the condition if an
input variable to the condition changed.

The same is true when calculating regressions. Megressions are of the
form f(z X, B, + gij = f(A+¢&) Again by calculating the value of the expression i
ij

the first year, when X changes to ¥, one only needs to apply the following
transformationf (A+—Xij B+ X B, +£i).



The same speed efficiencies can be found for toamsftions, alignment and

tabulations. For example when aligning by age-gragx and education level or
creating output tables by these components, mo#iiesfe categories do not change
much if at all during the simulation. It is theregacomputationally quite expensive to
identify all say 20-30 year old males with univeyseducation each period of the
simulation to perform an alignment. Rather by cotimguthe group membership at
the outset and only change group membership whehagacteristic changes, we
reduce significantly the computational costs.

These improvements were applied by creating a datacture that links every
variable to the processes which utilise the vaealiVhen the value of the variable
changes, then the related conditions, regresdi@rsformations etc are updated.

Moving simulations from periodic to initialisatigplus simulation only when inputs

change transfers some of the computing cost framulsition period to the start.

Initialisation becomes a good deal longer as rathan simulating equations where
conditions are met, (e.g. only simulating work ddrafor those who are in-work the
previous period), we must now simulate all equaide.g. simulate the equations
conditional on working and conditional on not wariin the previous period).

However as no alignment needs to occur at thisestagall that is being calculated is
inj B; , there are significant economies of scale and nteshlooping through the

1)

data.

As development of the program occurred incremegniatid different versions have
been run on different machines and with differgmecifications, it has been quite
difficult to gauge the impact of the speed improeats. However a conservative
estimate is that the run time is 10% of what it \ead potentially as low as 5%. So
the qualitative conclusion is that the gains aghly significant.

A relatively minor speed improvement was to staagables in a static rather than in
a dynamic data structure (i.e. as an array rathem & list). As the set of variables
does not vary within a run of the model, there @gsgain to using a dynamic list;

instead a speed penalty is imposed as the listsrtedoke traversed to find a particular
variable as opposed to simply using the array indedentify the variable.

While attention was paid in the original data-staue to the memory efficiency of the
data-structure by storing only new events, littie@tion was paid to the space taken
within this structure, which proved very costly.rirexample all incidences of values
were stored adoublesor real numbers, even though the majority of \Heis were
binary variables that could be stored ashar. To improve this we introduced a new
category in the data dictionary which specified ttype of variable to be used, so
that binary variables only took up a fraction oé tspace required to storedauble
Also we stored real numbers as integers multighed 000 and categorical variables
as integers, taking half the space of a doublealdf@ conducted an audit of the entire
data-structure stripping out as much superfluoushang requirements as possible.
This has been particularly important allowing foruch bigger datasets to be
simulated on a laptop with limited RAM.

Something we have not explored yet is a furtheedpenprovement that could be
found by creating sub-sets of objects associaték @ach condition. At present, the



model needs to scroll down through the whole datasesach process. If conditions
are updated dynamically, then the sub-groups wkieeecondition is true can be
updated dynamically, resulting in calculations otdiging place on the subset. When
the condition changes then, this updates the saijetts where the condition is true.
Therefore in doing simulations, the model will ordynulate over the set of objects
eligible to be simulated.

At present all processes are run in series. Inrotloeds each process is completely
simulated before moving on to the next processs Taquires a data pass for each
process. This is necessary for processes thatligree@ as the decision about who
makes a transition will depend upon all objects amud on individual objects.
However some processes such as transformationsu@algned processes do not
need to be done serially. Efficiencies could baediby simulating these processes in
parallel. For example if age is simulated for adividual, then age squared and age
band could be calculated using age as input fan @atividual before continuing on
to the next individual cutting the number of datsges and improving the speed of
the model. Other examples include the calculatibduvations and lagged values of
variables.

As always in microsimulation models, there is adér@ff between flexibility,
complexity and performance. Parameterisation mayesiones result in enhanced
complexity and thus reduced transparency and dasseaf the model. In the LIAM
structure, this has been less of an issue as ttzenpgerisation allows for the same
code to be reused over and over without recodiogpssome extent improving the
transparency. There are however some performaredeads noted elsewhere in the
paper, where the degree of parameterisation andrgié&ation may increase the
number of operations required and thus increasetithe to run a simulation.
However this must be weighed up against the contgle{ creating a dynamic
model without an existing framework.

7.  Implementations of the Framework

In this section we describe a number of implementatof the LIAM framework.
Thus far there have been four implementations @htiodel

a. Life-cycle redistribution in the Irish Tax-BeneBiystem - Irish Dynamic Cohort
Microsimulation Model

b. Redistributive impact of Indirect Taxes in Europe&ynamic microsimulation of
expenditures in the EUROMOD framework.

c. Spatial Policy Analyses — Simulation Model of thish Local Economy (SMILE)

d. Cross-national comparisons of the distributionapacet of pensions and the
incentive to retire — multi-country dynamic micnwsilation model — EU 6
Framework project, Old Age Income Maintenance Fegi¢AIM).

Model (a) was the basis of the author's PhD andbess used to examine the life-
course redistributive impact of the Irish Tax-Ban8&fstem (O’'Donoghue, 2002) and
the redistributive impact of pension reform (O’'Dghae, 2005). The implementation



was a single cohort model taking 1000 people agaddsimulating the entire life-
history and then linking with the EUROMOD tax-behefodel to simulate the tax-
benefit system. A feedback loop was used to ingatpothe impact of tax-benefit
policy on labour supply decisions.

While model (a) utilised an external tax-benefitcrosimulation model to provide

tax-benefit simulations for use in the dynamic msmulation model, model (b)

takes inputs from the dynamic microsimulation framek into a static tax-benefit

model. As part of the EU tax-benefit model EUROMOtere was a desire to

examine the impact of indirect taxation on redmttion (See O’Donoghue et al,

2004). However most of the databases used as infuthe model did not contain

expenditure information. The LIAM framework was ds® simulate a system of

equations simulating total expenditure and budbates of 20 groups of goods on the
basis of information contained in the income susveyed in the model. Indirect taxes
were then simulated using the EUROMOD frameworkisThodel used datasets of
up to 50000 households simulating indirect taxe®fe fiscal year.

In recent years parallel microsimulation modellivegs been used for geographical and
spatial analysis (See Clarke, 1996 and Holm et18B6). Since 2002, a team
comprising the University of Leeds, NUI Galway ahelagasc have been developing
a model (c), the Simulation Model of the Irish Lb&onomy (SMILE) using the
LIAM framework with the principle objective of caing out spatial analysis in
Ireland (See O’Donoghue et al, 2005). Examplesugtelmodelling the impact of
local area demographic changes on welfare, modetle spatial impact of rural
policy reforms, identifying agri-tourism hotspotsdaeventually modelling the spatial
behavioural impact of public infrastructure devetmmts such as road building
programs. The first component of the model is dgwedl outside the framework,
requiring the statistical matching of individuabtdar local area census information
with micro-level household data to produce the bdataset. This done using a
statistical matching algorithm. The LIAM framewoik used to simulate typical
dynamic microsimulation variables such as demogdcaphd labour market variables.
Particular advancements from this model includéorea) labour markets, micro-farm
level production functions and spatial behaviouraddels. The model is currently
under development. This model, although divided iatound 30 county models of
about 70000 persons each simulates spatial basiegl apthe local level.

The fourth implementation of LIAM has just begurhewe it is being used to carry
out cross-national comparisons of the distributiomgpact of pensions in a selection
of countries in the EU (Be, Ge, Ir, It and Sw).adition a comparative analysis will
be carried using a semi-structural retirement daeisnodule based upon discounted
income and pension wealth streams. This model si@silover a 50 year horizon
2000-2050, cross-sections of about 10-15000 indail

8. Conclusions

To conclude we have discussed some of the methgidalannovations developed by
the LIAM dynamic microsimulation framework. In surany some of the main issues
are summarised in the following paragraphs.



Parameterisation has been used extensively thromigiv® model. This aids flexibility
as code does not need to be reprogrammed when @@ranthange. This in turn
improves the durability of the model as it allowsanparameters to be included when
better information becomes available.

Defining the data structure outside the model impsothe transparency and the
robustness of the model. When adding new variaioldbe model, alterations need
only to be made in one place, in a parameterlfikberefore reduces the possibility of
error and makes the model easier to change.

Using modularisation, all modules work independermt others which means that
new modules can be added without affecting thegitie of the model. It therefore
adds to the robustness of the model. Also, by afigwhe user to focus on small
sections of code at time, improves the transparehttye model.

Generalisation of main features of the dynamic rhatlews for the code which runs

transitions, alignment and transformations to hesed for different purposes. Taking
these as templates, one can declare a new moduleeiparameterisation of an

existing type and simply change the parametersrderoto produce a new process
module. Also because the number order and type arfuhe is parameterised, the
model can handle any number of modules of each apgein any order without any

need for extra programming. This is perhaps thetnmggsortant feature of the model

as it allows the model to be used for a wide varidtpurposes. It thus allows for ease
of expansion as improved data and micro-behavieuaoime available. Allow this not

an attempt at writing a microsimulation programmiagguage, it has allowed for a
variety of different applications to be construct@dhout the need for extensive

recoding. In addition it has been possible to hgeftamework as a template for other
dynamic models because the model itself is entiielyependent of data and

behavioural equations to be used.

Lastly we have described a range of efficiency mnpments in both speed and
memory usage in developing the framework. Whilereahkave been substantial
numbers of papers describing analyses carried puhdse models, relatively little

has been written on the technical development ®itlodels. We do not claim to be
the fastest or most efficient dynamic model; howeve have attempted to document
some of the issues that have arisen in the creafitins framework, so that hopefully

other model builders can learn from the developnpeatess of others. To promote
collaboration and further development, this model available on request to

researchers.
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Appendix 1.
In LIAM, macro alignment occurs by specifying:

1. Alignment Sheets need to be the same shapeaébr @ocess (but macro can be a
subset), as does the predictor

2. Create Temporary Set of Alignment Structureypé talign (= n+1, where n is the
number of processes to be macro aligned - stru¢@ris to store the macro level)

3. For each sub process, run through conditions canoht the number of people
(level.nPer) who meet conditions who are in eadbnatent cell (we don't store
predicted probability at this point as we don't knib- maybe simply assign zero and
use the existing code)

4. For macro process, do the same

5. Multiply the cell p times the number in cell Nrgp, the number to be selected in
cell

6. If the sub-processes are more disaggregatedtileamacro level, collapse to the
lower level by summing N over the higher leveldmross education levels)

7. Now we have the N's for the 2 dimensional tdbtemacro and each sub-process.
Sum over sub-processes to get expected overallaNdtcompare with the Macro
N m

8. To adjust multiply the highest level of the n@sheet (in this case level 2) In each
of the sub-process by N_m/N_t

9. Backup original Alignment numbers (to be usethefollowing year)

10. Store new Alignment totals in the sub-procdigmment structures.
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Figure 2.

Model Data Structure

tobjt
tobj *obj
tobjt *next_ptr
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tvarl *st_var
tobj *next_ptr
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tvarl *st_var
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double amount,

tval *next_ptr
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tval *next_ptr
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double amount,
tval *next_ptr

tval
int evtime
double amount,
tval *next_ptr

tval
int evtime
double amount,
tval *next_ptr

* The data is stored in a hierarchy of object tyfpelsjt) such as person, household,
firm etc.

» [Each of these object types themselves consistsofrdber of objectéobj) such
as the actual incidence of a person or household.

» Events(tvarl) such as births, tenure status or identificatiomber then occur to
objects.

» [Each event can have a number of incidences or véhe).

» For each event it is necessary to know what everuroed(tvar 1), when it
occurred(tval.evtime), and the value of the evefival.amount)



Figure3. Parameter Sheet Hierarchy

dyrunset
Parameters dealing with the data struc l Parametel dealing with simulation proce
objtype ; u agespine
Sias objtype X
polparam
dyvardesc
1 DATA transition
link xy alignment
l—f_ - E E g
linkage
Model

dyrunset: parameters necessary to run the model, input/bdipectories, time period
to be run etc.

objtype: This file tells the model how many object typlesre are (region, household,
person etc.).

objtype x: contains the incidences of each of the objectsyfse h, p, etc.). So
objtype_p would contain the set of id’s of all pers.

dyvardesc: In this file, all variables used in the modelnfir@vork are declared and
described.

linkage: these parameters define the set of possible bekseen objects.
link_xy: Stores the linkages between objects.
agespine: contains the list of modules to be run in theaiywc model.

transition: Each module has a corresponding parameter shebeiparameter file
“Transitions”. These parameter files tell the mode¢ output variables of each
process, what type of process, whether a procesdsrte be aligned and the actual
process parameters themselves such as the transaties, regression equation and
policy rules etc.

alignment: If a particular process is to be aligned, then riiedel framework will
look for an appropriate set afignmentparameters.

polparam: this parameter set contains information assocaidtdeach parameter for
each possible “system”, where the system to be isudefined in thedyrunset
parameters.

SeeParameterisatiosection for more detailed description.
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