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Abstract

Funded social security programs are particularly vulnerable to economic and �nancial mar-

ket shocks. As a consequence of the recent crisis, many Dutch pension funds had to submit

recovery plans that set out how the pension bu¤ers will be restored over the next couple of

years. Such plans will have to rely primarily on a mix of reduced bene�t indexation and

increased pension contributions. In view of these considerations, a discussion has emerged

whether indexation should be di¤erentiated across the various groups of participants in a pen-

sion fund. We investigate numerically this issue, developing an applied many-generation small

open economy OLG model with heterogeneous agents. The pension system consists of a �rst

pillar PAYG component and a funded second tier. In our stochastic simulations, we hit the

economy with a variety of unexpected demographic, economic and �nancial shocks. We then

compare welfare of di¤erent generations and (utilitarian) social welfare under di¤erent index-

ation schemes. The design of the indexation policy strongly a¤ects welfare and the capability

of the system to prevent underfunding. Overall, we �nd welfare improvement when indexation

is linked to age or income. However, we observe large di¤erences among the generations.

Keywords : indexation, funded Social Security, inter-generational welfare, pension bu¤er,

stochastic simulations.

JEL codes : H55, I38, C61

1 Introduction

Funded social security programs are particularly vulnerable to economic and �nancial market

shocks. The recent crisis in the �nancial markets has made this particularly clear for the Nether-

lands, where about half of the pension income is provided by pension funds. The combined e¤ect

of the fall in asset prices and the reduction in the long-run interest rate (used to discount future

pension payments) has in a few months time reduced the funding ratios (the ratio of assets over
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liabilities) of most pension funds by at least a quarter to a third. As a result, a large proportion

of the funds had to submit recovery plans that set out how over the next couple of years the

pension bu¤ers will be restored. Many pension funds will have to rely on a mix increasing pension

contributions, reduced indexation and, in exceptional cases, a reduction in the pension rights that

individuals have accumulated up to now.

This paper focuses on reductions in indexation as an instrument for the stabilisation of pension

bu¤ers. Indexation can take on two basic forms. One is the indexation to price in�ation aimed

at maintaining the purchasing power of the pensioneers. The other is the indexation to wage

increases which is aimed at keeping the purchasing power of retired in line with that of workers.

Reductions in the indexation of pension rights is uniform. Given that people accumulate nominal

pension claims over their working life,1 those that are retired or close to retirement and those

who are in the highest income groups will be hurt most by a uniform reduction in indexation.

Moreover, the retired and the older workers are left with little if no �exibility to make up for

the lost indexation by working longer, while in addition a given loss of purchasing power has to

be absorbed in a consumption reduction over a relatively short remaining lifetime. Hence, these

groups are at particular risk under policies that resort to indexation as a way to keep pension

bu¤ers stable.

In view of these considerations, a discussion has emerged on whether the policy parameters

should be di¤erentiated across the various groups of participants in a pension fund. In fact, Hurst

and Willen (2007) �nd that it is typically welfare improving to have pension contributions increase

with the worker�s age. However, to the best of our knowledge there are no results on how indexation

should be ideally varied across the di¤erent participants in a pension fund.

We investigate numerically the welfare consequences of cohort-speci�c indexations. In partic-

ular, we compare three types of cohort-speci�c indexation: status-dependent indexation, in which

the retired always receive full indexation to the general price level increase (but not more than

that), while adjustments to indexation are proportional across all workers (who thus bear all the

risk associated with the pension bu¤ers); age-dependent indexation, in which the reduction in

indexation in the case of underfunding is smaller for older than for younger cohorts; and income-

dependent indexation, in which the reduction in indexation in the case of underfunding is smaller

for low-income than for higher-income individuals.

We develop an applied many-generation small open economy OLG model with heterogeneous

agents. The pension system consists of a �rst pillar PAYG component and a funded second tier.

We calibrate the pension system in our model to the Dutch situation. However, for the remaining

exogenous parameters we follow the standard literature and use the demographic, macroeconomic

and �nancial market data over the past decades for the U.S.. In our stochastic simulations, we

hit the economy with a variety of unexpected shocks. These may be broadly classi�ed into three

categories: demographic uncertainty (the size of newborn generations and survival probabilities

that determine life expectancy), economic uncertainty (productivity growth and the in�ation rate)

and �nancial uncertainty (bond, equity and housing returns, and yield curve). We compare welfare

of di¤erent generations and (utilitarian) social welfare under di¤erent indexation schemes.

We �nd that the design of the indexation policy strongly a¤ects welfare and the capability of

the system to prevent underfunding. We �nd some welfare gain when indexation is linked to skill

or (especially) age. However, there are large di¤erences among generations. Combining age- and

1 In the Netherlands, pension rights are always expressed as the number of euros of pension one gets as of the
retirement age. Each year of additional work adds an extra amount to the existing stock of pension rights, while
usually this stock of rights is increased with the rate of price or wage in�ation (indexation). However, indexation is
not required by law and the board of the fund may index by less if this is deemed necessary to maintain a healthy
pension bu¤er.
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skill-dependent indexation policies the welfare gain is maximised.

The paper is organised as follows. Section 2 presents the theoretical framework. Section 3

describes the benchmark calibration, while Section 4 shows the main results from stochastic simu-

lations based on the benchmark indexation policies, as well as alternative policies and a robustness

check on the policy parameters. Section 5 concludes the main text. Finally, the Appendix provides

further details on a number of aspects of the model and the simulations.

2 The model

There are a number of D cohorts alive in any given period t . Each cohort j (= 1; :::; D) consists of

Nj;t individuals at time t, who are distributed in I equally-sized skill groups, i = 1; :::; I. A higher

value of i denotes a higher skill level. The skill level of a person determines his income, given his

age and the macroeconomic circumstances. Index j = 1; :::; D indicates the age of the cohort,

computed as the amount of time since entry into the labour force. Further, all individuals within

a given group earn the same income. Finally, a period in our model corresponds to one year.

2.1 Cohorts and demography

We assume that each individual born in period t � j + 1 (that is, the person has age zero at the

start of t � j + 1 and age one at the end of that period) has an exogenous marginal probability

 j;t�j+1 2 [0; 1] of reaching age j (at the end of period t) conditional on having reached age j � 1.
For example,  j;t�j+1 = 1 means that an individual alive at age j�1 at the end of period t�1 will
be alive with certainty at age j at the end of period t. Similarly,  j;t�j+1 = 0 implies that anyone

alive at age j � 1 at the end of period t� 1 will surely die before the end of period t. Speci�cally,
we assume that  j;t�j+1 = 0 for any j � D+1. To be precise, we assume that individuals can die

only at the start of a period, so that the survival of that moment implies that the person reaches

the end of the period and receives an income and consumes during that period. We further assume

that the cohort of newborn agents in period t is 1 + nt times larger than the cohort of newborn

agents in period t� 1:

N1;t = (1 + nt)N1;t�1: (1)

In general, we denote with Nj;t the size of cohort j at time t. This size depends on the history of

past survival probabilities. Indeed, for j = 2; :::; D:

Nj;t = Nj�1;t�1 j;t�j+1:

2.2 Individuals

Individuals in the same cohort can only di¤er in terms of their income. Each individual in a given

cohort belongs to some skill group i, with i = 1; :::; I. We assume that individuals remain in the

same skill group over their entire life. Individuals work until the exogenous retirement age R and

live for at most D years. During their working life (j = 1; :::; R), they receive a labour income yi;j;t
de�ned as follows:

yi;j;t = eisjzt; (2)
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where ei; i = 1; :::; I is an e¢ ciency index (linked to the skill level of class i), sj ; j = 1; :::; R, a

seniority index (for given skill level income varies with age) and zt is an exogenous income process:

zt = (1 + gt) zt�1; (3)

where gt is the exogenous nominal growth rate of the process and z0 = 1.

Average income across workers is de�ned as:

yt =

RP
j=1

Nj;t

I

IP
i=1

yi;t;j

RP
j=1

Nj;t

: (4)

If all workers have identical productivity (i.e. e1 = ::: = eI = s1 = ::: = sI = 1), then yt = zt.

We make a distinction between yt and zt because the relative sizes of the cohorts may change over

time, implying that the ratio yt=zt will �uctuate over time.

2.3 Social security and accidental bequests

Social security is based on a two-pillar system. The �rst pillar is a pay-as-you-go (PAYG) de�ned

bene�t (DB) program which pays a �at bene�t to every retiree. It is organised by the government,

which sets the contribution rate to ensure that the �rst pillar is balanced on a period-by-period

basis. The second pillar is funded and may either be organised by the government or by the private

sector. In reality, in the Netherlands some of the parameters of the second pillar are set by the

government, while other parameters are set by the pension fund itself. Since we do not explicitly

model the objectives of the di¤erent policymakers we do not need to make speci�c assumptions

about who sets which parameters. Finally, the government redistributes the accidental bequests

left by those who die.

2.3.1 The �rst pillar of the social security system

Each period, an individual of working age pays a mandatory contribution pFi;j;t to the �rst pillar

of the social security system. This contribution depends on the size of income yi;j;t relative to the

thresholds �lyt and �
uyt:

pFi;j;t =

8>><>>:
0 if yi;j;t < �lyt

�Ft

�
yi;j;t � �lyt

�
if yi;j;t 2

h
�lyt; �

uyt

i
�Ft

�
�uyt � �lyt

�
if yi;j;t > �uyt

9>>=>>; ; j � R; (5)

where �l; �u and �Ft are policy parameters. In period t the bene�t received by an individual retiree

is a fraction �F of the average income in the economy:

bFt = �F yt: (6)

Given the bene�t formula in equation (6), each period the contribution rate �Ft adjusts such that

aggregate contributions into the �rst pillar PFt equal aggregate �rst-pillar bene�ts BFt paid out to

the retired:

PFt = BFt ; (7)
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where

PFt =
RX
j=1

Nj;t
I

IX
i=1

pFi;j;t;

and

BFt =
DX

j=R+1

Nj;t
I

IX
i=1

bFt = bFt

DX
j=R+1

Nj;t:

2.3.2 The second pillar of the social security system

The second pillar consists of a DB funded program. Each period, an individual of working age

also pays a mandatory contribution pSi;j;t to this second pillar if her income exceeds the franchise

income level. Speci�cally, pSi;j;t is a fraction of the labour income in excess of the franchise:

pSi;j;t = �St max f0; yi;j;t � �ytg ; j � R; (8)

where �St is a policy parameter.

A cohort entering retirement at age R + 1 receives a bene�t proportional to its average wage

over the years worked. Period t bene�ts for an individual in skill group i of cohort j are given by:

bSi;j;t =Mi;j;t; j > R; (9)

where the accumulated "stock of nominal rights" Mi;j;t at the end of period t evolves as:

Mi;j;t =

8><>: (1�mt)

(
(1 + !i;j;t)Mi;j�1;t�1

+�max [0; yi;j;t � �yt]

)
j � R

(1�mt) (1 + !i;j;t)Mi;j�1;t�1 j > R+ 1

9>=>; ; (10)

where the coe¢ cients � and � denote the annual accrual rate and franchise, respectively, as shares

of average income and !i;j;t is the amount of indexation of nominal rights, which is allowed to

be cohort- and skill-group speci�c. Indexation aims at following nominal wage growth. However,

actual indexation may depend on the �nancial position of the pension fund, as explained in more

detail below. Further, mt captures a proportional reduction in nominal rights that may be applied

when the funding ratio is so low that restoration using standard instruments is no longer possible

(see below). We assume that mt > 0 only when !i;j;t = 0. Each individual enters the labour

market with zero nominal claims. Hence, Mi;0;t�j = 0, where Mi;0;t�j are nominal claims at the

end of period t� j or beginning of period t� j + 1 when the generation enters the labour market
at age 0.

For a given accrual rate � and franchise �, each period the government chooses the contribution

rate �St and the indexation parameters f�t; �tg in the bene�t formula in equations (9)-(10). The
choice of these policy parameters will depend on the level of the nominal funding ratio Ft, which

is the ratio between the pension fund�s assets, At, and its liabilities, Lt:

Ft =
At
Lt

(11)

At the end of period t the pension fund�s assets are the sum of the second-pillar contributions from

workers in period t minus the second-pillar bene�ts paid to the retirees in period t plus the pension

fund�s assets at the end of period t� 1 grossed up by their return in the �nancial markets:

At =

0@ RX
j=1

Nj;t
I

IX
i=1

pSi;j;t �
DX

j=R+1

Nj;t
I

IX
i=1

bSi;j;t

1A+ (1 + rgt )At�1; (12)
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where

1 + rgt =
�
1� ze � zh

� �
1 + rlbt

�
+ ze (1 + ret ) + z

h
�
1 + rht

�
(13)

is the gross nominal rate of return on the pension fund�s asset portfolio with an exogenous and

constant share ze invested in equities, an exogenous and constant share zh invested in the housing

market and the remainder in long-term bonds. In view of their obligations, pension funds have a

preference for investing long-term debt. Here, we assume that the entire �xed-income part of the

pension fund�s portfolio consists of 10-year zero coupon bonds. Further, the net returns on the

long-term bonds (rlbt ), equity (r
e
t ) and housing (r

h
t ) are exogenous.

Our assumption that the pension fund always holds 10-year bonds, implies that at the end of

each year bonds of 9-year maturity are sold to purchase new 10-year bonds. In more detail, the

fund�s annual portfolio rebalancing operation works as follows. In year t� 1, say, the pension fund
buys 10-year zero-coupon bonds for an amount of Bt�1. Denoting the return on 10-year bonds by

rb10;t�1, the value at maturity of the bonds is

Pt+9 = Bt�1
�
1 + rb10;t�1

�10
: (14)

Hence, the present value Bt�1 of the bond holdings in year t� 1 is:

Bt�1=
Pt+9�

1 + rb10;t�1
�10 :

In year t, only 9 years of maturity are left, and the bond return is rb9;t. The present value Bt is

then

Bt=
Pt+9�

1 + rb9;t
�9

Combining with (14) we obtain the following expression:

Bt = Bt�1

�
1 + rb10;t�1

�10�
1 + rb9;t

�9 = Bt�1r
lb
t :

The fund�s liabilities are the sum of the present values of current and future rights already

accumulated by the cohorts currently alive:

Lt =

DX
j=1

Nj;t
I

IX
i=1

Li;j;t: (15)

The expected present value at time t of current and future bene�ts of a cohort j in skill group i is

Li;j;t =

Et

"
D�jP

l=R+1�j

1
 j;t�j+1

 
lY

k=0

 j+k;t�j+1

!
1

(1+rsl;t)
lMi;j;t

#
j � R

Et

"
D�jP
l=0

1
 j;t�j+1

 
lY

k=0

 j+k;t�j+1

!
1

(1+rsl;t)
lMi;j;t

#
j > R

: (16)

where future bene�ts are discounted using the swap curve
n
rsk;t

oD
k=1

. Note that  j;t�j+1 cancels

out in the above equation. When j � R, furthermore, we discount all future bene�ts to the current

year t, but of course they will only have to be paid out once individuals have retired.
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2.3.3 Accidental bequests

Accidental bequests do not have any signi�cant bearing on our results. Their only role is to ensure

that resources do not "disappear" because people die. The �nancial assets (wealth) left by those

who die are all collected by the government. The aggregate of these accidental bequests in the

economy amounts to:

Ht =
DX
j=2

�
1�  j;t�j+1

� Nj�1;t�1
I

IX
i=1

ai;j;t =
DX
j=2

(Nj�1;t�1 �Nj;t)
I

IX
i=1

ai;j;t;

where ai;j;t are the assets accumulated by each individual in cohort j in skill class i at the end of

period t� 1 and which become available for collection by the government at the start of period t.
The government redistributes Ht equally over all individuals alive at time t, resulting in an

individual transfer

ht =
Ht

DP
j=1

Nj;t

: (17)

2.4 The individual decision problem

In a given period t an individual of skill group i in cohort j chooses a sequence of nominal con-

sumption levels for the rest of her life. Savings are then invested in a portfolio of bond, equity and

housing assets. Hence, the individual solves:

Vi;j;t = max
fci;j+l;t+lgD�j

l=0

Et

2666664
D�jX
l=0

�l

 j;t�j+1

 
lY

k=0

 j+k;t�j+1

!
u

0BBBBB@
ci;j+l;t+l

lY
k=0

(1 + �t+k)

1CCCCCA

3777775 ;
where u (:) is the period utility function, which we assume to be of the conventional CRRA format

with coe¢ cient of relative risk aversion  > 0,

u (x) =
x1� � 1
1� 

subject to equations (1)-(17), and the intertemporal budget constraint

ai;j+l+1;t+l+1 =

8>>><>>>:
(1 + rt+l+1) (ai;j+l;t+l � ci;j+l;t+l)
+yi;t+l+1;t+l+1 � pFi;t+l+1;t+l+1 � pSi;t+l+1;t+l+1 + ht+l+1

if j + l < R

(1 + rt+l+1) (ai;j+l;t+l � ci;j+l;t+l)
+bFt+l+1 + b

S
i;t+l+1;t+l+1 + ht+l+1

if j + l � R

9>>>=>>>; ;

where ai;j+l;t+l are the assets (wealth plus income) in year t+ l of an individual in skill group i of

cohort j + l and

1 + rt+l+1 =
�
1� xej+l � xhj+l

� �
1 + rsbt+l+1

�
+ xej+l

�
1 + ret+l+1

�
+ xhj+l

�
1 + rht+l+1

�
;

is the overall return on her asset portfolio in period t + l + 1, the composition of which is age-

speci�c and characterised by the exogenous weights
n
xej+l; x

h
j+l

o
at the end of period t + l. The

individual earns returns on the investments in short-maturity bonds rsbt+l+1, equities r
e
t+l+1, and
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housing market rht+l+1. Note that in contrast to the pension fund�s portfolio, the individual�s

portfolio does not include holdings in long-maturity bonds. The exclusion of long-term bonds

from the individual�s portfolio has no consequences for the results. Also note that the individual�s

portfolio varies with age, but for given age is assumed to be �xed across skill groups. The end of

next period�s assets equal the gross return on this period�s assets minus consumption, plus "net

income". For the workers, net income is labour income minus social security contributions plus the

accidental bequest, while for the retired net income equals the sum of the social security bene�ts

plus the accidental bequest. Note that only the second-pillar bene�t is cohort- and skill-speci�c.

The Euler equation for this problem is

u0 (ci;j+l;t+l) = � j+l+1;t�j+1Et+l

�
1 + rt+l+1
1 + �t+l+1

u0
�
ci;j+l+1;t+l+1
1 + �t+l+1

��
: (18)

2.5 Shocks

We assume that there are no individual-speci�c shocks. In our model, eight types of exogenous

macro-economic shocks hit the economy. Speci�cally, we consider demographic shocks (to the

growth rate of the cohort of the newborn cohort and to the survival probabilities), productivity
shocks (to the income growth rate), in�ation rate shocks and �nancial market shocks (to equity

returns, housing returns, the bond yield curve and the swap curve). All these shocks are collected

in the vector !t =
h
�nt ; �

 
t ; �

g
t ; �

�
t ; �

e
t ; �

h
t ; �

b
1;t; :::; �

b
D;t; �

s
1;t; :::; �

s
D;t

i
with elements

� �nt : shock to the newborn cohort growth rate, nt

� � t : shock to the set of survival probabilities,
�
 j;t�j+1

	D
j=1

� �gt : shock to the nominal income growth rate, gt

� ��t : shock to the in�ation rate, �t

� �et : shock to the nominal equity return, ret

� �ht : shock to the housing return, rht

� �bk;t; k = 1; 2; :::; D: shock to the nominal bond return at maturity k, rk;t

� �sk;t; k = 1; 2; :::; D: shock to the swap return at maturity k, rk;t

All these shocks a¤ect the size of the funding ratio (equation (11)), whereas only demographic

shocks a¤ect the �rst-pillar pension system (equation (7)). As a consequence, the key parameters

of the pension system have to be adjusted to restore the balance in the �rst pillar and to maintain

sustainability of the second pillar.

Each demographic shock is distributed independently of all other shocks. The growth rate nt
of the newborn cohort depends on deterministic and random components:

nt = n+ �nt ;

with n the mean and �nt the innovation at time t, which follows an AR(1) process with parameter

':

�nt = '�nt�1 + �
n
t ; �nt ~N

�
0; �2n

�
:
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The survival probabilities evolve according to a Lee-Carter model (see Appendix Section 6.2.2

for details):

ln
�
1�  j;t�j+1

�
= ln

�
1�  j;t�j

�
+ � j

�
�+ � t�j+1

�
; � t�j+1~N

�
0; �2 

�
; j = 1; :::; D:

with � j an age-dependent coe¢ cient, � a constant growth factor (to describe the historical trend

increase in survival probabilities) and � t�j+1 an innovation at time t� j + 1 that follows an i.i.d.

process with variance �2 .

We allow the shocks to the in�ation rate, the nominal income growth, the one-year bond return,

the equity return, and the housing return to be correlated with each other and over time. These

variables feature the following multivariate process:0BBBBBB@
�t

gt

rb1;t
ret
rht

1CCCCCCA =

0BBBBBB@
�

g

rb1
re

rh

1CCCCCCA+
0BBBBBB@

��t
�gt
�b1;t
�et
�ht

1CCCCCCA ;

with means
�
�; g; rb1; r

e; rh
�0
and innovations

�
��t ; �

g
t ; �

b
1;t; �

e
t ; �

h
t

�0
following a VAR(1) process,0BBBBBB@

��t
�gt
�b1;t
�et
�ht

1CCCCCCA = B

0BBBBBB@
��t�1
�gt�1
�b1;t�1
�et�1
�ht�1

1CCCCCCA+
0BBBBBB@

��t
�gt
�b1;t
�et
�ht

1CCCCCCA ; (19)

with 0BBBBBB@
��t
�gt
�b1;t
�et
�ht

1CCCCCCA ~N (0;�f ) :

We �nally turn to the swap curve
n
rsk;t

oD
k=1

and the bond yield curve
n
rbk;t

oD
k=1

. Consistent

with the prevailing literature (see, e.g., Evans and Marshall, 1998; Dai and Singleton, 2000) we

assume that the swap curve follows the process:0BBBB@
rs1;t0

rs2;t0
...

rsD;t0

1CCCCA =

0BBBB@
rs1
rs2
...

rsD

1CCCCA+
0BBBB@

�s1;t0

�s2;t0
...

�sD;t0

1CCCCA ; (20)

where t0 indicates the month2 and the vector of innovations follows a vector autoregressive distrib-

uted lag (VADL) process of order 1,

2Notice that here one period is a month rather than one year. We need a higher frequency to obtain a large
enough data set.
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0BBBB@
�s1;t0

�s2;t0
...

�sD;t0

1CCCCA = �0 + �1

0BBBB@
�s1;t0�1
�s2;t0�1
...

�sD;t0�1

1CCCCA+ �2
0BBBBBB@

��t0�1
�gt0�1
�b1;t0�1
�et0�1
�ht0�1

1CCCCCCA+
0BBBB@

�s1;t0

�s2;t0
...

�sD;t0

1CCCCA ; (21)

and 0BBBB@
�s1;t0

�s2;t0
...

�sD;t0

1CCCCA ~N (0;�s) :
At every time t0, the swap return at maturity k , rsk;t0 ; is given by the sum of the average value

rsk and the innovation �
s
k;t0 . The innovation is a linear combination of deterministic and random

components. The deterministic part is a function of several variables at time t0�1: the innovations
at all maturities k, and the innovations in (19) converted to monthly frequency (see Appendix

Section 6.2.4). The random part is given by the shock �sk;t0 (correlated across maturities).

Since E
h
rsk;t0

i
= E

h
rsk;t0�1

i
, because of stationarity, the average swap curve is given by the

expression 0BBBB@
rs1
rs2
...

rsD

1CCCCA =

0BBBB@
rs1
rs2
...

rsD

1CCCCA+ (I � �1)�1 �0: (22)

The bond yield curve
n
rbk;t

oD
k=1

is constructed analogously. The one-year bond interest rate

rb1;t is already determined via the VAR process (19). The remaining parts of the curve are modelled

analogously to the swap curve:0BBBB@
rb2;t0

rb3;t0
...

rbD;t0

1CCCCA =

0BBBB@
rb2
rb3
...

rbD

1CCCCA+
0BBBB@

�b2;t0

�b3;t0
...

�bD;t0

1CCCCA
with

�
�b2;t0 �b3;t0 ::: �bD;t0

�0
following a VADL(1) process similar to (21). Appendix 6.2.5

provides details on the computation of the parameters of the bond yield curve. Realisations of

the 9- and 10-year bond returns determine the return on long-term bonds of the fund�s portfolio,

rlbt =
(1+rb10;t�1)

10

(1+rb9;t)
9 ; realisations of the 1-year bond returns determine the return on short-term

bonds of an individual�s portfolio, 1 + rsbt = 1 + rb1;t.

The simulations conducted below take place at the annual frequency. Therefore, in those

simulations we apply (21) (and the corresponding model for the bond yields) twelve times for a

given year t, and use the last realisations as our annual swap curve
n
rsk;t

oD
k=1

and annual bond

yield curve
n
rbk;t

oD
k=1

. For more details. see the Appendices 6.2.4 and 6.2.5.
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2.6 Policy interventions

We assume that the government automatically adjusts the contribution rate �Ft 2 [0; 1] to maintain
(7) and thus a balanced �rst pillar of the social security system. On average, this contribution rate

increases over the years along with population ageing.

As far as the second pillar is concerned, policy works as follows (the rule is formally described

in Appendix 6.1). We de�ne a state variable � 2 f0; 1g to indicate whether policy intervention
takes place or not. When the funding ratio (11) lies between 1 + �m and 1 + �u, � = 0 and no

intervention is undertaken. When the ratio falls below 1 + �m or goes above 1 + �u, � = 1 and

intervention takes place. In particular, when the ratio falls below 1 + �m a long-term restoration

plan is started, while when it falls below 1+�l (�l < �m), a situation referred to as "underfunding",

a short-term restoration plan is started. When the ratio exceeds 1 + �u (�u > �m), measures are

taken to reduce the funding ratio. Hence, policy is aimed at keeping the funding ratio within

the interval [1 + �m; 1 + �u]. This is achieved by following an "indexation policy", of which the

primary instruments are changes in the parameters �t 2 [0; 1] and �t 2 [0; 1] that capture the

degree of indexation to real income growth, 1+gt1+�t
� 1, and in�ation, �t, respectively. In the case

of a short-term or a long-term restoration plan, �rst productivity indexation �t is reduced up to

a minimum of zero. Then, if necessary, price indexation �t is reduced up to a minimum of zero,

followed by an increase in the contribution rate �St up to a maximum �S;max. If this is still not

enough in the case of underfunding, then nominal claims are scaled back by whatever amount

is necessary to eliminate the underfunding within the allowed restoration period. In the case of

a long-term restoration plan, no further action is undertaken and so nominal pension claims are

unaltered. When the fund is in a situation of "overfunding", i.e. the funding ratio is above 1+ �u,

�rst any reductions in nominal pension rights are given back. Then, if the funding ratio allows

this, any missed price indexation is restored, followed by the restoration of any missed productivity

indexation. Then, if the funding ratio is still not expected to return to below 1 + �u within the

allowed time span, the contribution rate is reduced up to a minimum of zero.

Policymakers start period t with a combination of parameters
n
�St ; �t; �t

o
determined in the

preceding period and a funding ratio Ft = At=Lt. When t = 1,
n
�St ; �t; �t

o
=
n
�S ; �; �

o
and

the funding ratio Ft is assumed to be between the boundaries 1 + �m and 1 + �u. The exact

policy parameter combination
n
�St+1; �t+1; �t+1

o
for year t + 1 is determined from a projectioneFt+1 of the funding ratio at time t+1, computed from the fund�s levels of assets At and liabilities

Lj;t =
1
I

IX
i=1

Li;j;t to the various cohorts in year t (averaged over the skill groups), and under the

assumption of no further shocks
�
i:e:; !t+1 = 0

(2D+6)�1

�
.

Indexation We consider di¤erent indexation schedules for the nominal second pillar pension

rights. Under "uniform" indexation, indexation rates are identical to everybody. Under "status-

dependent" indexation, retirees always receive full income indexation. Finally, under "contingent"

indexation, the actual indexation rates vary across cohorts and/or skill groups.

Baseline: uniform indexation

In a given year indexation rates are identical across all individuals. That is,

1 + !i;j;t =

�
1 + �t

�
1 + gt
1 + �t

� 1
��

(1 + �t�t) : (23)

11



Status-dependent indexation

Now the amount of indexation depends on the "status" of the individual, worker or retiree.

Retirees always receive full (price plus productivity) indexation, whatever is the size of the funding

ratio. Hence, the purchasing power of their pension grows at the real-income growth rate. By

contrast, indexation for workers is subject to uncertainty and can vary between zero (no indexation)

and full indexation for both price and productivity increases. Hence,

1 + !i;j;t =

( �
1 + �t

�
1+gt
1+�t

� 1
��
(1 + �t�t) if j � R

1 + gt if j > R

)
: (24)

Contingent indexation

In this case, di¤erent groups in the population receive a di¤erent indexation, according to the

formula

1 + !i;j;t = (1 + gt) +

�
1 + (�t � 1)

�
1 + gt
1 + �t

� 1
��

(1 + (�t � 1)�t) f (i; j; �) (25)

When real productivity growth and in�ation are both positive and indexation is not full (�t < 1

or �t < 1) then the term in square brackets on the right-hand side is negative, implying that

!i;j;t < gt. The short-fall of actual indexation from nominal income growth may be di¤erentiated

across skill-groups and cohorts through the term f (i; j; �).

According to equation (25), indexation depends on two components. A target level given by

nominal income growth, 1 + gt, and a correction that is necessary to keep the funding ratio in the

interval [1 + �m; 1 + �u]. The correction depends on the policy parameters �t and �t that are equal

for all individuals and on a rescaling function f (i; j; �) speci�c to each cohort and skill group,

de�ned as follows:

f (i; j; �) =

(
1 � = 0

g (i; j) � = 1

)
(26)

The idea behind equation (26) is to make the correction larger for some population groups.

Notice that there is no correction when �t = �t = 1, and that indexation is identical for all the

cohorts when � = 0, i.e., when the funding ratio is between 1 + �m and 1 + �u and there is no

policy intervention. The indexation formula (25) is aimed at avoiding systematic redistribution

of bene�ts across groups, but allows for more vigorous responses across groups of the degree of

indexation to the pension funding ratio.

We concentrate on two speci�cations for the function g (i; j): (1) an age-dependent function,

where the correction is di¤erentiated across cohorts, while all the skill groups within a skill group

receive the same amount of indexation and (2) an income-dependent function, where the correction

is di¤erentiated across skill groups, while all the cohorts of working age within the same skill group

receive the same amount of indexation.

With the age-dependent function, each cohort j receives a di¤erent amount of indexation de-

pending on the average stock of nominal rights M j it has accumulated so far,

g (i; j) = ga (i; j) =

(
�1 � �2Mj

M
j � R

1 j > R

)
; (27)

where �1 > 1 and �2 > 0 are two exogenous parameters, M j are the average amount of nominal

rights accumulated by all the skill groups belonging to cohort j,

12



M j =
1

I

IX
i=1

M i;j

Here, M is the average across the M j of the working population,

M =
1

RP
j=1

Nj;1

RX
j=1

Nj;1M j ;

and the skill- and cohort-speci�c average stock of nominal rights,M i;j;1, is computed from equation

(10) under the assumption that at t = 1; we have �t = �t = 1;mt = 0 and there are no shocks

in the economy �that is, all the variables denoted by an � symbol in Section 2.6 are equal to 0.

Hence, the formulation with (27) ensures that for cohorts with a larger stock of nominal rights

(the older workers) indexation reacts less vigorously to movements of the funding ratio outside the

range [1 + �m; 1 + �u]. In particular, if the funding ratio falls below 1 + �m and therefore (in the

next period) �t < 1 or �t < 1, then the shortfall of !i;j;t from gt will be smaller for those cohorts.

However, when the funding ratio rises above 1+ �u and (to restore lost indexation in the past) the

fund sets �t > 1 or �t > 1, then the increase of !i;j;t beyond gt will also be smaller for these groups.

With the income-dependent function, each skill class i receives a di¤erent amount of indexation:

g (i; j) = gs (i; j) =

(
�1 � �2 (10� i) j � R

1 j > R

)
(28)

where �1 > 1 and �2 > 0 are two exogenous parameters. Hence, the higher is the skill level

of the individual (i is higher), the more vigorously the indexation of his pension rights reacts to

movements of of the funding ratio outside the range [1 + �m; 1 + �u].

In both equations (27) and (28) g (i; j) = 1 for j > R. Contingent indexation is abolished

in favour of uniform indexation when the funding ratio is restored to a level within the region

[1 + �m; 1 + �u]. We want the funding ratio to be una¤ected by the speci�c indexation formula in

this situation. Indexation enters the funding ratio equation through total bene�ts and the present

value of liabilities. The requirement that g (i; j) = 1 for j > R implies that total bene�ts coincide

under uniform and contingent indexation.

We also choose the parameters f�1; �2g and f�1; �2g in such a way to generate a present value
of liabilities identical to the one under uniform indexation (see the discussion of the calibration in

Section 3).

2.7 Welfare measures

We consider three measures of welfare, one is cohort- and skill-speci�c and the other two are

economy-wide. The �rst is the intertemporal utility function Vi;j;t for skill class i 2 f1; ::Ig, cohort
j 2 f1; ::Dg in year t. The second measure, SAt , is de�ned as the unweighted average of the

intertemporal utilities of all individuals alive in period t:

SAt =
DX
j=1

Nj;t
DP
j=1

Nj;t

1

I

IX
i=1

Vi;j;t:

The third measure, STt , is de�ned as the unweighted average of the intertemporal utilities of all

alive and unborn individuals:

13



STt =
DX
j=1

Nj;t
DP
j=1

Nj;t

1

I

IX
i=1

Vi;j;t +
1X
s=1

N1;t+s
DP
j=1

Nj;t

1
I

IP
i=1

Vi;1;t+s

(1 + q)
s : (29)

where q is the rate at which future generations� intertemporal utilities are discounted. In the

simulations, we truncate the computation of welfare to 250 unborn generations, as the discounted

welfare of subsequent generations is negligible in equation (29). Note that in equation (29) the size

of any unborn generation is normalised to the size of the population alive in year t.

To ease the interpretation of the three measures Vi;j;t, SAt and STt , we report them in terms

of constant consumption �ows. As regards the cohort-speci�c measure Vi;j;t, we de�ne "certainty

equivalent consumption" CECi;j;t for skill class i 2 f1; ::Ig, cohort j 2 f1; ::Dg in year t, as the
certain, constant consumption level over the remainder of the individual�s lifetime that yields a

utility level equal to the utility level under the relevant scenario. Hence,

CECi;j;t = u�1

0BBBBB@
Vi;j;t

Et

"
DP
l=j

�l�j

 j;t�j+1

 
l�jY
k=0

 j+k;t�j+1

!#
1CCCCCA (30)

Analogously, for the economy-wide measures we de�ne the constant consumption �ows

C�t = u�1

0BBBBBBBB@
S�t

DP
l=J+1

�l�(J+1)

 J+1;t�J

0B@l�(J+1)Y
k=0

 (J+1)+k;t�J

1CA

1CCCCCCCCA
; � = A; T; (31)

of an agent with the average age J in the economy in year t,

J = integer

26664
DP
j=1

jNj;t

DP
j=1

Nj;t

37775 ;
where integer [:] is the function that generates the largest integer smaller than or equal to the

number inside the square brackets. Note that this is the constant consumption stream of a person

of age J that gives her utility equal to social welfare St. It is not the constant consumption stream

that gives a person of age J the utility level that he has under the relevant policy. There is a

one-to-one relationship between the levels of Ct and St as calculated in (31).

We also de�ne the skill-group i speci�c counterparts SAi;t and S
T
i;t to S

A
t and S

T
t :

SAi;t =
DX
j=1

Nj;t
DP
j=1

Nj;t

Vi;j;t and STi;t =
DX
j=1

Nj;t
DP
j=1

Nj;t

Vi;j;t +

1X
s=1

N1;t+s
DP
j=1

Nj;t

Vi;1;t+s
(1 + q)

s :

Using SAi;t and S
T
i;t, we calculate (analogous to (31)) skill-group speci�c constant consumption �ows

CAi;t and C
T
i;t.
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2.7.1 Comparison of policy scenarios

We evaluate welfare under some scenario A relative to the welfare under some scenario B. The

scenarios di¤er in the way they distribute indexation among the individuals. In both scenarios the

parameters are initially identical and equal to those in the benchmark calibration. They are kept

unchanged in the ensuing years as long as the funding ratio remains between 1 + �m and 1 + �u.

Once the funding ratio falls below 1 + �m or goes above 1 + �u, the policy parameters change

according to the relevant indexation policy.

We consider four measures of welfare comparison between the two policies. A �rst natural

measure is the constant percentage di¤erence in certainty equivalent consumption between the two

scenarios. For each skill class and cohort in a given period this measure is computed as:

�CECi;j;t (A;B) �
CECi;j;t (B)� CECi;j;t (A)

CECi;j;t (A)
; (32)

where CECi;j;t (s) denotes the value of CECi;j;t under scenario s 2 fA;Bg. We use three further
measures to compare welfare between the two policies in a single number. One is the "majority

support" for policy B, that is the share of people that are better o¤ under B rather than under A:

Dt (A;B) �
1

DP
j=1

Nj;t

DX
j=1

Nj;t
I

IX
i=1

1 fCECi;j;t (B) > CECi;j;t (A)g ; (33)

where 1 f:g is an indicator function that assigns a value of one (zero) if the condition inside the
curly brackets holds (does not hold). The �nal two measures of welfare comparison are the "social

welfare gain" from using policy B rather than policy A, excluding, respectively including, the

welfare of the unborn generations:

�C�t (A;B) �
C�t (B)� C�t (A)

C�t (A)
; � = A; T: (34)

3 Calibration and details on the simulation

We follow the standard literature and calibrate the exogenous parameters of the model to reproduce

the main features of the US economy. However, the pension arrangement is calibrated to the Dutch

situation. Tables 1 and 2 summarise our benchmark calibration.

We assume that the economically active life of an agent starts at age 25. Individuals work for

R = 40 years until they reach age 65. They live for at most D = 75 years, until age 100. Their

coe¢ cient of relative risk aversion  is set to 2, in line with a large part of the macro-economic

literature. The discount factor � is set to 0:98, slightly above the usual choice of 0:96 because

individuals also take into account their survival probabilities. To compute the welfare measure

(29) we try several discount rates q for the utility of unborn generations. However, qualitatively

the results are insensitive to the speci�c value of q and we simply set q = 4%. The age-dependent

portfolio composition
�
xej ; x

h
j

	D
j=1

is taken from the mean values of the 2007 wave of the Survey

of Consumer Finances (SCF, 2009).3 Portfolio composition is reported by age groups and we

interpolate the data using the spline method. We keep the portfolio weights constant as of age 90.

The e¢ ciency index feigIi=1 is given by the income deciles in the U.S. for the year 2000 taken by
the World Income Inequality Database (WIID, version 2.0c, May 2008). We normalise the index to

3We aggregate assets into three categories: bonds (transaction accounts, certi�cates of deposit, savings bonds,
and bonds), equities (stocks, investment funds, cash value of life insurance, other assets) and housing (residental
property).
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have an average of 1. The seniority index fsjgIj=1 uses the average of Hansen�s (1993) estimation of
median wage rates by age group. We take the average between males and females and interpolate

the data using the spline method.

The exogenous social security parameters are speci�cally calibrated to the Dutch situation. For

the �rst social security pillar we set the bene�t scale factor �F = 0:17. The Dutch Tax O¢ ce

("Belastingdienst") reports for 2008 a maximum income assessable for �rst-pillar contributions of

EUR 3; 850:40 per month. We therefore set our upper income threshold for contributions �u = 1:10,

roughly equal to 3; 850:40 � 12=42; 403, where EUR 42; 403 is our imputation of the economy�s

average income as of 2008.4 The lower income threshold is set to �l = 0:33, in such a way as to

generate a starting contribution rate near 16% (it is �F1 = 16:42%), consistent with the reality. For

the second social security pillar, historically the accrual rate has been between 1:5 and 2% and

most frequently at 1:75%. We therefore consider � = 0:0175 and set the franchise to � = 0:33 in

order to generate a realistic average replacement rate of 37:60%. In the simulations we consider

a short-term restoration period of length Ks = 5 when the pension bu¤er falls below 1 + �l and

a long-term restoration period of length Kl = 15 when the pension bu¤er falls below 1 + �m,

but remains at or above 1 + �l. Further, we set the boundaries
n
�l; �m; �u

o
for the bu¤er atn

�l; �m; �u
o
= f5%; 25%; 60%g.

In the benchmark simulations we set
�
ze; zh

	
= f45%; 5%g for any level of Ft�1. Our choice

corresponds to the balance sheet average for Dutch pension funds over the period 1996 - 2005

(source: DNB, 2009). Because the various assets in the pension fund�s portfolio generally have

di¤erent realised returns, at the end of each period t its portfolio is reshu ed such that the system

enters the next period t+ 1 again with the original portfolio weights
�
zet+1; z

h
t+1

	
= f45%; 5%g.

We set the starting levels of the indexation parameters at �1 = �1 = 100%. Hence, the pension

fund starts by providing full indexation to nominal wages. To measure the funding ratio consistently

across the policies, the parameters f�1; �2g and f�1; �2g in equations (27) and (28) must be
chosen so that the contingent indexation policy generates the same level of total liabilities as the

policy with uniform indexation. Among the in�nite combinations of parameters with this property,

in the benchmark case we choose parameter combinations such that the maximum correction is

always three times larger than minimum indexation. This yields f�1; �2g = f2:1183; 0:4209g and
f�1; �2g = f1:1524; 0:0854g.
Figure 1 shows the functions ga (i; j) and gs (i; j) obtained with these parameters by age and

for some skill classes. The �gure informs that under age-dependent indexation cohorts aged 25 (in

any skill group i) rescale the indexation correction by ga (i; 1) = 209:28%, whereas cohorts aged

64 (the last working year in the model) rescale the correction by ga (i; 1) = 69:76%, so one-third

of that of the cohorts aged 25. Under income-contingent indexation, cohorts of any age j < R

belonging to the third skill group rescale the correction by 55:49%, whereas those belonging to

the tenth skill groups rescale the correction by 115:24%, three times the rescaling factor adopted

for the �rst skill group, 38:41%: However, we do not report in the �gure the rescaling function of

classes 1 and 2 as their income is on average below the franchise �, which means that these classes

contribute to the second pillar only when exogenous shocks bring their income above the franchise.

Hence, their bene�ts are negligible (on average null) in the computation of the fund�s liabilities.

4 In Eurostat the most recent number on average income in the Netherlands refers to year 2005. The same
source also provides the minimum income until year 2008. Exploiting the correlation between average and minimum
income, we run an OLS regression of average income over year and minimum income. As a result, we predict the
average income of year 2008 to be EUR 42; 403.
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Figure 1. Contingent indexation

Finally, the starting contribution rate is set such that aggregate contributions at time 1 coincide

with aggregate bene�ts in the absence of shocks. The rate that satis�es this condition is �S1 =

17:58%, which is close to the actual value in the Netherlands. We then choose initial assets A0
that generate an initial funding ratio F1 of 140% in the absence of shocks. Initial assets amount

to roughly 1:9 times the initial level of income in the economy.5 The contribution rate is capped

at �S;max = 25%.

5This is on the high side compared to the actual Dutch situation. However, in our model every worker participates
in the pension fund, while in the Netherlands this is only part (though a majority) of those who are employed. A
large fraction of the workers have their pension arranged through insurance companies, while the self-employed do
not participate in pension funds either (they have the possibility to build up their pension through an insurance
company, but the �nancial reserves of insurance companies are not considered part of the pension bu¤ers).
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Table 1. Calibration of the exogenous parameters

Symbol Description Calibration
General setting

D Number of cohorts (= maximum death age �25) 75

R Number of working cohorts (= retirement age �25) 40

 relative risk aversion 2

� Discount factor 0:98

q Discount rate unborn generations 4%�
xej ; x

h
j

	D
j=1

Household portfolio composition SCF (2009)

feigIi=1 E¢ ciency index WIID (2008)

fsjgIj=1 Seniority index Hansen (1993)

First-pillar parameters
�F Bene�t scale factor 0:17n
�l; �u

o
Income thresholds in the contribution formula f0:56%; 1:10%g

Second-pillar parameters
� Accrual rate 1:75%

� Franchise share 0:33�
Ks;Kl

	
Length of restoration periods f5; 15gn

�l; �m; �u
o

Boundaries of pension fund bu¤er f5%; 25%; 60%g�
ze; zh

	
Fund portfolio composition f45%; 5%g

f�1; �1g Initial indexation f100%; 100%g
f�1; �2g Parameters for age-dependent indexation f2:1183; 0:4209g
f�1; �2g Parameters for income-dependent indexation f1:1524; 0:0854g
�S1 Initial contribution rate 17:58%

�S;max Upperbound on contribution rate 25%

The deterministic growth rate of the newborn cohort, � = 0:47362%, is the average growth

from a regression using 20 observations on the annual variation in the number of births in the US

between 1986 and 2005 (the source is the Human Mortality Database); details on the regression are

in Appendix 6.2. This Appendix also describes our calibration of the survival probabilities based

on the Lee-Carter model (Lee and Carter, 1992). The combination of survival probabilities and

birth rates determines the size of each cohort. The starting value of the old-age dependency ratio

(i.e., the ratio of retirees over workers) is 25:23%, in line with the OECD �gures for 2005.

Crucial is the calibration of average price in�ation, nominal income growth and the bond, equity

and housing returns. We loosely follow the literature in this regard (see, e.g., Brennan and Xia,

2002, and van Ewijk et al., 2006) and set the average in�ation rate at � = 2%, the average nominal

income growth rate at g = 3% (which corresponds to an average real productivity growth of 1%

per year), the average one-year bond interest rate at rb1 = 3%, and the average housing return

at rh = 4%. The average equity return is set at re = 5:2% to generate a funding ratio that is

stable over time in the absence of shocks and policy parameter changes.6 Innovations in these

�ve variables follow the VAR(1) process described in Appendix 6.2.3. Appendixes 6.2.4 and 6.2.5

provide details on the calculation of the parameters of the process for the swap curve
n
rsk;t

oD
k=1

and the bond yield curve
n
rbk;t

oD
k=1

.

6 In this situation, the ratio is approximately constant for the �rst 20 years under uniform indexation, and still
around 110% after 75 years. The �rst adjustment is made only after 44 years.
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Table 2. Calibration of the averages of the random variables

Symbol Description Calibration
� In�ation rate 2%

g Nominal income growth rate 3%

rb1 Nominal bond return 3%

re Nominal equity return 5:2%

rh Nominal housing return 4%

Note: see the Appendix for the stochastic component

To obtain the optimal consumption rules from equation (18) we solve the individual decision

problem recursively by backward induction using the method of "endogenous gridpoints" (Carroll,

2006). To avoid the curse of dimensionality caused by having state variables for the shocks listed

in Table 2, we determine the optimal consumption pro�le in year t under the assumption that

the shocks in year t � 1 are equal to their average, and in t there are innovations following the
multivariate process (19). We approximate the random variable distributions by means of a Gauss-

Legendre quadrature method (see Tauchen and Hussey, 1991) and discretise the state space using

a grid of 100 points with triple exponential growth.7 For points that lie outside the state space

grid, we use linear extrapolation to derive the optimal rule.

We simulate N = 1; 000 times a sequence of vectors of unexpected shocks over 2D � 1 years,
drawn from the joint distribution of all the shocks. The shocks are identical for all the cohorts

that are alive in a given year. The number of years of one simulation run equals the time distance

between the birth of the oldest cohort and the death of the youngest cohort. At each moment

there are D overlapping generations. Our welfare analysis is however based on the economy as of

the Dth year in the simulation. Hence, we track only the welfare of the cohorts that are alive in

that year, implying that those that die earlier are ignored, and we track the welfare of cohorts born

later, the latest one dying in the �nal period of the simulation. For the sake of simplicity, we label

the relevant years for which we follow the economy and track welfare as t = 1; :::; D. The purpose

of simulating the �rst D � 1 years is to simply generate a distribution of the assets held by each
cohort at the end of t = 0.

In each simulation run, we assume that the ageing process stops after t = 40. That is, mortality

rates at any given age no longer fall. This assumption is in line with the fact that some important

ageing studies, such as those by the Economic Policy Committee and European Commission (2006)

and the United Nations (2009), only project ageing (and its associated costs) up to 2050, hence

roughly 40 years from now. Moreover, it is hard to imagine that mortality rates continue falling for

many more decades at the same rate as they did in the past. In particular, many of the common

mortal diseases have already been eradicated, while it will become more and more di¢ cult to treat

remaining lethal diseases. E¤ective treatment of those diseases will also surely be held back by the

fact that the share of national income that can be spent on health care is bounded.

To allow for the cleanest possible comparison among the various indexation policies, we use

the same shock series under all policies, while, moreover, during the initialisation phase of each

simulation run no policy responses occur and all the cohorts receive uniform indexation. Hence, the

starting situation at the start of t = 1 is identical in each run under the various policies. Because
7We create an equally-spaced grid of the function log(1 + log(1 + log(1 + s))), where s is the state variable. The

grid with "triple exponential growth" applies the transformation exp(exp(exp(x) � 1) � 1) � 1 to each point x of
the equally-spaced grid. This transformation brings the grid back to the original scale of the state variable, but
determines a higher concentration on the low end of possible values. A grid with triple exponential growth is more
e¢ cient than an equally-spaced grid as the consumption function is more sensitive to changes at small values of the
state variable.
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welfare depends on the size of the bu¤er after the initialisation period in the simulation run, we

reset the stock of pension fund assets such that the bu¤er at the end of t = 0 equals 140%. Finally,

the process zt is re-normalised to unity at the end of t = 0 and the nominal pension claims of

the various cohorts are rescaled accordingly. At the start of the preceding D � 1 dummy years,
liabilities are set at the steady state values implied by the income level at that moment. They are

computed using (10) under the assumption of no shocks (i.e. expectations are treated as if they

are realised).

4 Results

4.1 Benchmark

Figure 2 shows the median funding ratio resulting from our simulations.8 Although all the four poli-

cies e¤ectively keep the ratio within the [1 + �m; 1 + �u] interval, the ratio under status-dependent

policy is usually below the one under the other policies. The reason is that this policy is less e¤ec-

tive at restoring the funding ratio, since it can modify the indexation of only part of the population

to reach a desired target ratio.
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Figure 2. Median funding ratio

The funding ratio is slightly more volatile under status-dependent indexation policy (see Figure

3, panel a). With the same policy, furthermore, it is more likely that the funding ratio falls below

the threshod 1 + �l for underfunding (see Figure 3, panel b). In fact, under this policy the fund

manager is more constrained in keeping the ratio stable, as it cannot change the indexation of the

retirees.

8We report the median rather than the average, because the former is not a¤ected by the few extreme outcomes
in our simulations.
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Figure 3. Funding ratio volatility

Table 3 presents the summary statistics for the various indexation policies. Indeed, the status-

dependent policy produces a more volatile funding ratio with a median coe¢ cient of variation of

about 20%, while in all other cases it is below 19%. For such policies the funding ratio lies below

the threshold 1+ �m in about one-third of the cases and above 1+ �u also in about one-third of the

cases. The two fractions indicate a rough overall balance between the number of times in which

policy aims at keeping indexation low and contributions high if necessary and the number of times

in which policy is aimed at the opposite con�guration. Under status-contingent policy it is a little

more likely to have low rather than high indexation.

Although the di¤erences in volatility are rather small, there is a more pronounced di¤erence

in the probability of implementing a change in the policy parameters. The indexation parameters

f�t; �tg are less frequently changed under the status-dependent policy (in 21:67% of the cases)

than under the other policies (around 28% of the cases). When the parameters are changed more

frequently, their standard deviation across simulations in a given year is smaller. In fact, under

status-contingent policy, the adjustment in the parameters has to be larger because it a¤ects a

smaller part of the population (the workers only).

The �nal part of Table 3 reports several of welfare measures. Social welfare is highest under

status-dependent policy when the future generations are neglected (CA1 is highest) and under

uniform indexation when they are taken into account (CT1 is highest). Welfare di¤erences are

generally small to modest small. The largest di¤erence is between a status-dependent policy able

to generate for an average individual a certainty equivalent consumption increase of 0:60% relative

to a uniform indexation policy. Despite this, we �nd a large majority support for a shift from

uniform indexation to age-dependent indexation (D1 = 63:13%) and especially to status-dependent

indexation (D1 = 97:09%). This suggests that the various cohorts and skill groups in the economy

may experience very di¤erent welfare e¤ects from a shift from uniform to alternative indexation

policies.9

9 It is worth pointing out that there is no exact correspondence between �CA1 and D1: the former measure
converts into certain equivalent consumption the sum of all the individual value functions, while the latter �rst
converts each individual value function. Since the conversion function is non-linear, Jensen�s inequality applies and
the two measures produce di¤erent outcomes.
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Table 3. Benchmark comparison of the indexation variants

% Uniform Status-dep. Age-dep. Skill-dep.
Ratio volatility

Median coe¤. of var. 18.8331 19.9060 18.9126 18.7851

Prob. of a ratio below 1 + �l 14.6773 17.5773 14.5840 14.5747

Prob. of a ratio below 1 + �m 31.7027 35.2293 31.6213 31.4480

Prob. of a ratio above 1 + �u 33.1560 31.0733 33.4653 33.3507

Prob. of intervention 27.9275 21.6738 28.0148 27.7880

Policy parameters

�t, average 93.5513 90.1605 93.8798 93.6689

std. dev. (200.7988) (254.7742) (203.3143) (200.4585)

�t, average 83.0122 78.7285 83.8928 82.9427

std. dev. (189.1137) (226.6732) (194.9137) (190.3703)

�St , average 14.5508 15.4028 14.4780 14.5972

std. dev. (10.2934) (10.4342) (10.2864) (10.2852)

Welfare

CA1 75.2455 75.6932 75.1948 75.2756

�CA1 in % - 0.5950 -0.0674 0.0400

CT1 35.6420 34.0040 35.4488 35.6104

�CT1 in % - -4.5956 -0.5419 -0.0885

D1 - 97.0924 63.1346 42.0818

Note: �Prob. of intervention�means that at least one of
n
�St ; �t; �t

o
is changed.

Figure 4 shows the inter-generational welfare comparison across the four policies, based on

equation (32). A positive value of �CEC indicates that a given cohort is better-o¤ under the

alternative policy rather than under the uniform indexation policy.

The �gure shows that almost all the cohorts are best o¤ with a status-dependent indexation,

while their welfare gains relative to uniform indexation policy expressed in CEC may be over

3% (for workers over 60 and "younger" retirees). Status-dependent indexation raises welfare as it

eliminates uncertainty about indexation as of retirement. Cohorts in retirement years are clearly

better-o¤ with this policy, as they expect a certain degree of income indexation over all their

remaining years. The welfare gain is larger the larger the potentially remaining years of life. The

welfare increase as a result of a shift to status-dependent indexation is smaller the younger is

worker. While workers will receive a safe level of indexation as of retirement, during the their

working life they will face a more volatile degree of indexation (the "cost" of providing the elderly

with safer indexation). Due to discounting, the higher degree of certainty at retirement will weigh

less heavily the younger is the worker. Notice that cohorts aged 33 or younger at t = 1 are actually

worse o¤ under status-dependent indexation (although the welfare loss is small).

The welfare di¤erences for the various cohorts between the other contingent indexation policies

and the uniform policy are much smaller. They are very close to 0 for the retired, for whom there

is no rescaling of the indexation correction (f (i; j; �) = 1 for j > R) and the policy parametersn
�St ; �t; �t

o
are very close to their values under uniform indexation. As regards age-dependent in-

dexation, we observe a small welfare gain for the cohorts near retirement (they face lower volatility

in the indexation parameters) and for the youngest cohorts. The latter experience age-dependent

indexation over their entire their lifespan. Hence, they face more volatility in the indexation para-

meters when they are young and smaller volatility when they are older. The latter e¤ect dominates
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in the overall welfare e¤ect as higher uncertainty when works on a low level of accumulated pension

rights, while the higher degree of certainty when older applies to a larger stock of pension rights.

Unsurprisingly the welfare di¤erences between the skill-dependent indexation policy and the

uniform policy is small. After all, the curve is obtained through aggregation over all skill groups,

while the idea of skill-dependent indexation is to make indexation less certain for some groups (who

would lose out) and more certain for other groups (who would gain).
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Figure 4. Intergenerational welfare comparison

�CEC > 0: better-o¤ with the contingent policy

Figure 5 considers the welfare di¤erence between uniform and skill-dependent indexation (as a

function of age) by skill group. It shows the graphs for skill groups 3, 6, and 10. It is clear from the

�gure that cohorts belonging to the lower skill groups bene�t more from the policy, as they face

smaller corrections of their indexation. Under this calibration, only the two highest skill groups

actually face larger corrections. However, this is enough to neutralize the positive e¤ects for the

eight less-skilled groups when we compute the aggregate welfare across the groups.
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Figure 5. Welfare comparison, income-contingent indexation

4.2 Alternative policies

4.2.1 Fixed price indexation at retirement

We consider here a variant of status-dependent indexation, in which retirees always receive full

indexation to price in�ation (instead of to nominal income growth), but not more than that.

The second colum of Table 4 reports the key statistics from this variant. Compared to the

benchmark status-dependent indexation policy of Table 3, this case generates a volatility of the

funding ratio, average values and standard deviations of the policy parameters closer to those

under uniform indexation and alternative contingent policies. Figure 6 (solid line) displays the

inter-generational welfare comparison of this policy with the uniform indexation policy. Although

the maximum attainable welfare gain is lower than under the benchmark status-dependent policy

(it is at most 2:83% instead of 3:36%), younger generations now are also better-o¤, as the lower

indexation to the retirees alleviates the burden of the parameter adjustment faced during the

working years.

4.2.2 Age- and skill-dependent indexation combined

We combine here age-dependent indexation with skill-dependent indexation. Bene�ts are then

computed using a rescaling function f (i; j; �) de�ned as

f (i; j; �) =

(
1 � = 0

ga (i; j) gs (i; j) � = 1

)
The overall spread between the maximum correction (skill class 1, age R) and the minimum cor-

rection (skill class 10, age 1) is the product of the spread under each policy, that is, 900%.
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The last column of Table 4 reports the summary statistics from the simulation of this case.

There is no relevant di¤erence compared to age- and income- dependent policies of Table 3. How-

ever, the fraction D1 of individuals preferring this policy to a uniform indexation policy is now

above 50% (it is 61:56%), between the fractions of those preferring an age-dependent indexation

and those preferring an income-dependent indexation (respectively 63:13%, and 42:08%, see Table

3). Figure 6 shows in the dashed line the inter-generational welfare comparison between this policy

and the uniform policy. We see from a comparison with Figure 4 that the curve mimics the one

under the age-dependent indexation policy.

Table 4. Alternative policies

Fixed Age-skill
% Uniform price index. dependent

Ratio volatility

Median coe¤. of var. 18.8331 19.5214 18.9150

Prob. of a ratio below 1 + �l 14.6773 15.7067 14.6133

Prob. of a ratio below 1 + �m 31.7027 33.1947 31.6693

Prob. of a ratio above 1 + �u 33.1560 32.6653 33.4027

Prob. of intervention 27.9275 23.0790 27.9380

Policy parameters

�t, average 93.5513 92.4600 93.2584

std. dev. (200.7988) (237.7732) (199.0640)

�t, average 83.0122 83.9604 82.7924

std. dev. (189.1137) (223.2408) (189.2975)

�St , average 14.5508 14.0190 14.4703

std. dev. (10.2934) (10.6649) (10.3039)

Welfare

CA1 75.2455 75.6064 75.1299

�CA1 in percent - 0.4796 -0.1536

CT1 35.6420 33.5776 35.4204

�CT1 in percent - -5.7923 -0.6217

D1 - 99.5267 61.5593

See note to Table 3.
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Figure 6. Welfare comparison, alternative policies

4.3 Robustness check

4.3.1 Spread between maximum and minimum indexation

We replicate the benchmark analysis using a di¤erent calibration of the parameters f�1; �2g and
f�1; �2g. The parameters are still chosen to generate the same level of liabilities as under uni-
form indexation, but this time they give rise to a di¤erent distribution of indexation across and

within cohorts. In the benchmark case of Section 4.1 the spread between maximum and mini-

mum correction was set at 300%; here we set it to lower (150%) and higher (500%) levels. The

resulting parameter combinations are f�1 = 1:3616; �2 = 0:1361g, f�1 = 1:0708; �2 = 0:0397g and
f�1 = 2:7172; �2 = 0:6464g, f�1 = 1:1886; �2 = 0:1057g respectively.
Table 5 reports the summary statistics from this analysis. The values in the table are in line

with those for the corresponding policies in Table 3. A remarkable di¤erence is that, when the

spread is 150%, the funding ratio more often lies between 1+�l and 1+�m under the age-dependent

policy (this happens in 40:50� 14:72 = 25:78% of the times, instead of around 17% in most other

simulation) rather than between 1 + �m and 1 + �u.

Social welfare including future generations, CT1 , deteriorates under both policies as the max-

imum spread becomes larger. This e¤ect is absent in the measure excluding future generations,

CA1 , as some groups of individuals (the youngest, the poorest) have larger welfare gains that o¤set

the larger losses of the other groups. Indeed, the fraction of individuals supporting age-dependent

rather than uniform indexation is virtually una¤ected by the spread size (it is around 68%), and

the fraction of those supporting skill-dependent indexation slightly falls with the spread size (from

45% to 38%). Overall, we still �nd a majority support for age-dependent policy but not for skill-

dependent policy.

26



Table 5. Varying the indexation spread

% Spread: 150% Spread: 500%
Age-dep. Skill-dep. Age-dep. Skill-dep.
Ratio volatility

Median coe¤. of var. 19.0578 18.8788 19.0742 18.8818

Prob. of a ratio below 1 + �l 14.7240 14.5560 14.8480 14.5240

Prob. of a ratio below 1 + �m 40.5013 31.5987 31.9347 31.5440

Prob. of a ratio above 1 + �u 33.6200 33.3640 33.3600 33.4147

Prob. of intervention 27.7914 27.9167 27.8228 27.9537

Policy parameters

�t, average 93.6865 93.5186 94.0686 93.3732

std. dev. (202.4731) (199.0098) (204.2607) (198.4291)

�t, average 82.6277 82.9550 82.7534 82.6977

std. dev. (190.2551) (191.3603) (191.0686) (187.8790)

�St , average 14.4370 14.4439 14.4595 14.5560

std. dev. (10.3284) (10.3198) (10.3058) (10.2983)

Welfare

CA1 75.2561 75.2647 75.2440 75.1645

�CA1 in percent 0.0141 0.0256 -0.0020 -0.1077

CT1 35.6206 35.6468 35.3828 35.5025

�CT1 in percent -0.0599 0.0135 -0.7272 -0.3913

D1 67.7309 44.6790 67.5347 38.4413

See note to Table 3.

Figure 7 reports the intergenerational welfare comparison between uniform indexation and the

two contingent policies for the two spreads. Although the curves resemble those of Figure 4, we

notice more pronounced gains and losses under age-dependent policies when the spread is larger.
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Figure 7. Welfare comparison, indexation spread

4.3.2 Fund portfolio composition

In the benchmark analysis the fund�s portfolio contains bonds, equity and real estate assets in

constant proportions. Here we allow the portfolio composition to vary with the size of the funding

ratio, a situation closer to the reality. Speci�cally, we consider the following portfolio strategy:

�
zet ; z

h
t

	
=

8>><>>:
�
ze; zh

	
if Ft�1 < 1 + �

l�
ze; zh

	
if Ft�1 2

h
1 + �l; 1 + �m

i
�
ze; zh

	
if Ft�1 > 1 + �

m

9>>=>>;
In particular we study two variants. In one variant

�
ze; zh

	
= 1

2

�
ze; zh

	
and

�
ze; zh

	
= 3

2

�
ze; zh

	
,

that is, the proportion of bonds is increased when the funding ratio is low, in an e¤ort to reduce

the portfolio risk, and reduced in when the funding ratio is high, to bene�t from the higher

(expected) returns on equity and real estate assets. In the second variant
�
ze; zh

	
= 3

2

�
ze; zh

	
and

�
ze; zh

	
= 1

2

�
ze; zh

	
, that is, holdings of bonds are reduced in the case of a low funding ratio,

in an attempt to reach a quick restoration of the fund assets through the higher expected returns

on equity and real estate assets, and raised in the case of a high funding ratio, to lock in this high

ratio with a safer portfolio. We develop the analysis concentrating only on the uniform indexation

policy (the one currently adopted in the Netherlands) and the age-dependent indexation policy.

These policies determine two opposite e¤ects on the funding ratio. Compared to the benchmark

situation of Table 3, only the second variant is able to reduce the volatility of the ratio, while the

�rst variant actually increases it. Notice in particular that under the second variant the funding

ratio lies more frequently in the interval
�
1 + �l; 1 + �m

�
than under the benchmark (around

35�14 = 21% of the time rather than 18%), and it is less frequently above 1+�u (27% rather than
33%). As a consequence, on average under the second variant the indexation parameters are lower,

and the contribution rates higher. The implication for welfare is that many cohorts are worse o¤
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under the second variant and the D1 statistic is substantially above 50% in this case. In contrast,

many cohorts prefer the �rst variant, as its more frequent policy interventions are able to generate

on average larger indexations and lower contribution rates.

Table 6. Portfolio composition

% Bond holding if low ratio
High (variant 1) Low (variant 2)

Uniform Age-dep. Uniform Age-dep.
Ratio volatility

Median coe¤. of var. 19.4095 20.0300 18.0159 17.7808

Prob. of a ratio below 1 + �l 14.5560 14.5240 14.5920 14.5200

Prob. of a ratio below 1 + �m 31.2034 31.8513 34.7162 35.0124

Prob. of a ratio above 1 + �u 33.5120 33.0200 27.7280 27.1213

Prob. of intervention 28.5676 28.3988 27.1179 26.9772

Policy parameters

�t, average 93.9160 93.5964 90.2125 90.9142

std. dev. (207.0244) (206.4927) (202.8326) (203.0081)

�t, average 84.8801 84.6584 68.9498 68.0742

std. dev. (205.4961) (209.2161) (178.3491) (174.6744)

�St , average 13.5575 13.3905 16.3461 16.5005

std. dev. (10.8141) (10.7980) (8.3208) (8.1831)

Welfare

CA1 75.431 75.3655 75.1243 75.1507

�CA1 0.2465 0.1595 -0.1611 -0.1260

CT1 35.5094 35.7258 35.4310 35.4643

�CT1 -0.3720 0.2351 -0.5920 -0.4986

D1 73.6935 80.3179 34.7224 49.7111

See note to Table 3.

Figure 8 shows the inter-generational welfare comparison of the uniform indexation policy under

the two variants with the benchmark uniform indexation policy; a similar picture emerges from

the comparison of age-dependent policies. We see that the youngest generations prefer variant 1

that increases the bond holding when the ratio is low, as they pay contribution rates 1% lower on

average. Furthermore, the retirees prefer variant 2 to the benchmark policy, as it produces a lower

volatility of the indexation parameters.
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Figure 8. Welfare comparison, portfolio composition

5 Conclusions

In this paper we have investigated the welfare implications of di¤erent ways of indexing second

pillar funded pensions. We have also explored the consequences of those di¤erent policies for the

pension bu¤ers. We described the economy with an OLG model of a small-open economy, featuring

a two-pillar pension system similar to the one in the Netherlands. The economy was subject

to demographic, economic and �nancial shocks that we calibrated from US data. We compared

uniform indexation to all the individuals (the method currently followed in the Netherlands), status-

dependent indexation that provides a �xed indexation to the retirees, age-dependent and skill-

dependent indexation policies. We �nd that not all the policies are equally e¤ective in responding

to exogenous shocks. Indeed the status-dependent policy, leaving to the workers all the burden of

the fund�s restoration, on average produces lower and more volatile funding ratios. Except for the

youngest cohorts all the other cohorts bene�t from status-dependent indexation when indexation for

the retired always follows nominal income growth. When indexation for the retired always follows

price in�ation, all cohorts can be made to bene�t. We �nd some welfare gain when indexation

is linked to skill or (especially) age. There are however large di¤erences among generations. To

bene�t more from age-dependent policy are middle-aged cohorts, who have more nominal rights

and enjoy the highest indexation. In contrast, the generations of young workers and retirees prefer

the skill-dependent policy, respectively because they pay lower contribution rates and pro�t from

from a lower volatility in the indexation of their bene�ts. Combining age- and skill-dependent

policies the welfare improvement is generalised, although each cohort receives a lower gain than

under its preferred policy.
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6 Appendix

6.1 Detailed rules for the adjustment of the policy parameters

The adjustment policy works as follows. In case no restoration plan from an earlier period is still

active in t:

1. If Ft < 1 + �l, a short-term restoration plan is started that after Ks years in the absence of

shocks brings back along a linear growth path the funding ratio at 1+�l. Hence, the sequence

of policy parameter combinations
�
�St+1; �t+1; �t+1

�
; :::;

�
�St+Ks ; �t+Ks ; �t+Ks

�
is set at period

t such that the funding ratios eFt+1; eFt+2; :::; eFt+Ks projected from Ft in the absence of further

shocks hit the target funding ratios
_
F t+� = Ft +

h�
1 + �l

�
� Ft

i
�
Ks for years � = 1; :::;Ks.

For every period t + � along the restoration path, we �rst reduce productivity indexation

�t+� up to a minimum level of zero. If this is not enough, we reduce parameter �t+� up to a

minimum level of zero. If this is still not enough, we raise the contribution rate �St+� up to

a maximum of �S;max. If after applying all these measures the funding ratio still falls short

of its target �Ft+� , we set �
S
t+� = �S;max, �t+� = �t+� = 0 and apply a reduction in nominal

rights mt+� > 0 such that eFt+� = _
F t+� .

2. If 1 + �l � Ft < 1 + �m, a long-term restoration plan is started that after Kl years in the

absence of shocks brings back along a linear growth path the funding ratio at 1+ �m. Hence,

the sequence of policy parameter combinations
�
�St+1; �t+1; �t+1

�
; :::;

�
�St+Kl ; �t+Kl ; �t+Kl

�
is set at period t such that the funding ratios eFt+1; eFt+2; :::; eFt+Kl projected from Ft in

the absence of further shocks hit the target funding ratios
_
F t+� = Ft + [(1 + �

m)� Ft] �Kl

for years � = 1; :::;Kl. For every period t + � along the restoration path, we �rst reduce

productivity indexation �t+� up to a minimum level of zero. If this is not enough, we reduce

price indexation �t+� up to a minimum level of zero. If this is still not enough, we raise �St+�
up to a maximum of �S;max. If after applying all these measures the funding ratio still falls

short of
_
F t+� , we set �

S
t+� = �S;max, �t+� = �t+� = 0, but we apply no reduction in nominal

rights.

3. If 1 + �m � Ft < 1 + �
u, there are two cases:

(a) In the absence of any missed nomimal rights (see below), the next-year policy parameters

are set to �St+1 = �St and �t+1 = �t+1 = 1.

(b) In the presence of missed (unrestored) nominal rights, the next-year policy parameters

are set to �St+1 = �St and �t+1 = �t+1 = 0.

4. If Ft � 1 + �u, mt+1 is set to restore any missed nominal rights (as described below) to the

extent that the funding ratio does not fall below the target ratio 1 + �u.10 If after restoring

possible missed nominal rights still eFt+1 > 1 + �u, then further adjustment to the policy

parameters is made. First, we restore possible missed price indexation (see below). Then,

we restore possible missed productivity indexation and, �nally, we reduce the contribution

rate �St+1 up to a minimum of 0. If after applying all these measures the funding ratio in the

absence of shocks still exceeds 1+ �u, we raise price indexation by an extra amount �̂t+1 > 0

10Dutch pension law says that a pension fund is not allowed to reduce contribution rates until any earlier reduction
in nominal rights is undone.
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such that over a period of three years along a linear path in the absence of shocks the funding

ratio is back at 1 + �u.

In case a long-term restoration plan from an earlier period is still active in t:

1. If Ft < 1 + �l, the long-term restoration plan is cancelled and the policymaker follows the

above policy under "no restoration plan" from an earlier period still active in t. That is, it

sets up a short-run restoration plan as determined above.

2. If 1 + �l � Ft < 1 + �
m, there are two cases:

(a) If Ft <
_
F t, we reduce productivity indexation up to a minimum of �t+1 = 0 to produce

a projected ratio eFt+1 = _
F t+1in the absence of shocks. If this is not enough, we reduce

price indexation up to a minimum of �t+1 = 0. If this is still not enough, we increase the

contribution rate up to a maximum of �St+1 = �S;max. If after applying these measures

next period�s funding ratio still falls below F t+1, we set �
S
t+1 = �S;max, �t+1 = �t+1 = 0

and undertake no further action.

(b) If
_
F t � Ft < 1+�

m, the policy parameters are those prescribed by the existing long-term

restoration plan.

3. If 1 + �m � Ft < 1 + �u, then the above policy under "no restoration plan" from an earlier

period still active in t is followed.

4. If Ft � 1 + �u, then the above policy under "no restoration plan" from an earlier period still

active in t is followed.

In case a short-term restoration plan from an earlier period is still active in t:

1. If Ft < 1 + �
l, there are two cases:

(a) If Ft <
_
F t, we reduce productivity indexation up to a minimum of �t+1 = 0 to produce

a projected ratio eFt+1 = _
F t+1in the absence of shocks. If this is not enough, we reduce

price indexation up to a minimum of �t+1 = 0. If this is still not enough, we increase the

contribution rate up to a maximum of �St+1 = �S;max. If after applying these measures

next period�s funding ratio still falls below
_
F t+1, we set �

S
t+1 = �S;max, �t+1 = �t+1 = 0

and mt+1 > 0 such that in the absence of shocks eFt+1 = _
F t+1.

(b) If F t � Ft < 1+�
l, the policy parameters are those prescribed by the existing short-term

restoration plan.

2. If 1 + �l � Ft < 1 + �m, then the above policy under no restoration plan from an earlier

period still active in t is followed. That is, a long-term restoration plan is set up in the way

described above.

3. If 1 + �m � Ft < 1 + �u, then the above policy under no restoration plan from an earlier

period still active in t is followed.

4. If Ft � 1 + �u, then the above policy under no restoration plan from an earlier period still

active in t is followed.
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We restore missed price and productivity indexation and missed nominal rights as follows. Let

us take the case of price indexation. For this case, we de�ne two processes, an "actual" process

(tracking the actual indexation that has been given, where � is long-run average in�ation),

p�;at = (1 + �t�) p
�;a
t�1; (35)

and a "shadow" process that corresponds to always having full indexation:

p�;st = (1 + �) p�;st�1: (36)

We set the processes equal to unity at t = 1 (D periods into the simulation run): p�;a1 = p�;s1 = 1.

Suppose that in period t, the funding ratio exceeds 1+�u. Then, indexation for the next period

will at least be equal to full indexation: �t+1 � 1. In case p�;at < p�;st , the indexation in the next

period will be set at most so high that the missed indexation is restored in expected terms. That is,

�t+1 will be set at most such that p
�;a
t+1 = p�;st+1, which is equivalent to (1 + �t+1�) p

�;a
t = (1 + �) p�;st ,

which in turn is solved as:

�restoret+1 =
1

�

�
p�;st
p�;at

� 1
�
+
p�;st
p�;at

:

Finally, we de�ne �ut+1 as the indexation rate that brings the funding ratio to 1 + �u next year in

the absence of further shocks. Actual indexation �t+1 will be set at:

�t+1 = min
�
max

�
1; �ut+1

	
; �restoret+1

	
:

The processes (35) and (36) continue further until the end of the simulation run.

For missed productivity indexation, we similarly de�ne the "actual", respectively "shadow",

processes:

p�;at =

�
1 + �t

�
1 + g

1 + �
� 1
��

p�;at�1;

p�;st =

�
1 +

�
1 + g

1 + �
� 1
��

p�;st�1;

where p�;a1 = p�;s1 = 1. Restoration of indexation is completely similar to that in the case of price

indexation.

Finally, for reductions in nominal rights (captured by mt > 0), we de�ne the "actual", respec-

tively "shadow", processes

pm;at = (1�mt) p
m;a
t�1 ;

pm;st = pm;st�1;

where pm;a1 = pm;s1 = 1. Again, if at some moment t, we have pm;at < pm;st and the funding

ratio exceeds 1 + �u, missed nominal rights can be given back up to a maximum level such that

pm;at+1 = pm;st+1. The exact formula for the restoration of missed nominal rights is

mt+1 = max

(
min

(
0; 1�

eFt+1
1 + �u

)
;min

�
0; 1� pm;st

pm;at

�)
where eFt+1 is the projection at time t + 1 of the funding ratio in the absence of further shocks.
To see the �rst argument of this expression, notice that if mt+1 = 1 � eFt+1

1+�u , all nominal rights
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are multiplied by the factor
eFt+1
1+�u . Hence, all future pension bene�ts are multiplied by this same

factor and, then, total liabilities are multiplied by this same factor, implying that the funding ratio

becomes 1 + �u.

6.2 Details on the calibration

6.2.1 Growth rate of the newborn cohort

For the number of births in the US between 1985 and 2005 (source: HMD, 2009), we estimate the

model:

nt = n+ �nt ;

�nt = '�nt�1 + �
n
t ; �nt ~N

�
0; �2n

�
:

This yields n = 0:0047362, ' = 0:4543931 (standard error 0:2223041) and �n = 0:0132662 (stan-

dard error 0:0017105).

6.2.2 Survival probabilities

Our simulations require cohort life tables, which are incomplete for recent cohorts. Using easily

available period life tables, however, leads to an over-estimate of mortality because of the well

documented downward trend in mortality. To correctly estimate mortality, we follow the Lee-

Carter model (Lee and Carter, 1992) and collect from HMD (2009) US period life tables from

1950 to 2005. These contain the total population on a year-by-year basis from ages 0 to 110. We

call  pj;t the probability of being alive in year t for individuals aged j, conditional on having been

alive at age j � 1. To distinguish the trend from �uctuations, we estimate with singular value

decomposition the parameters of the Lee-Carter model:

ln
�
1�  pj;t

�
= �j + � j�t + �

 
t ;

where �j and � j are age-varying parameters, �t is a time-varying vector and � t is a random

disturbance distributed as N
�
0; e�2 �. Lee and Carter (1992) point out that the parameterisation

is not unique. Therefore, we choose the one ful�lling their suggested restrictions:8>><>>:
TP
t=1

�t = 0

DP
j=1

� j = 1

9>>=>>; ;

where t = 1; ::; T indicates the sample period. With these restrictions the estimated value for �j
will be the average probability over the sample that someone dies at age j , when having survived

up to age j � 1.11 Consistently with the existing literature we assume that the mortality index �t
evolves as a random walk with drift �:

�t = �t�1 + �+ �
 
t ;

with � t ~N
�
0; �2 

�
. With our data we estimate �̂ = �1:2595 and �̂ = 0:0266, thereby implying a

trend fall in the probability of dying at any age j, conditional on having survived up to age j � 1.

11Notice that 1
T

TP
t=1

ln
�
1�  pj;t

�
= 1
T

TP
t=1

�
�j + �j�t + � t

�
= �j+�j

 
1
T

TP
t=1

�t

!
+

 
1
T

TP
t=1

� t

!
= �j+

 
1
T

TP
t=1

� t

!

= �̂j +

 
1
T

TP
t=1

�̂ t

!
= �̂j , where �̂j is the estimate of �j and �̂

 
t is the regression residual. The last equality is

obtained by using that the sum of the residuals is zero.
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In the simulations we assume that �̂ = 0 after year t = 40, that is, there is no further population

ageing after 40 years. We make this assumption to avoid dealing with very large contribution

rates in the �rst- and second-pillar systems and on the assumption that the ageing process cannot

continue forever.

From the period life table estimates and the trend of the mortality index we calculate the cohort

life tables as follows:

ln
�
1�  j;t�j+1

�
= �̂j + �̂ j

�
�̂t�j+1 + j�̂

�
= �̂j + �̂ j�̂t+1;

where t�j+1 is the year of birth of the cohort. Thus  j;t�j+1 indicates the (estimated) probability
of being alive at age j (end of period t) for the cohort of individuals born at the beginning of year

t � j + 1, conditional on them being alive at age j � 1. In our model, the survival probabilities�
 j;D

	D
j=1

of the cohort born in year t = 0 are set equal to those of the actual cohort of individuals

born in 1950.

The survival probability for the cohort born in the following year t� j+2 evolves according to:

ln
�
1�  j;t�j+2

�
= �̂j + �̂ j

�
�̂t�j+2 + j�̂

�
= �j + �̂ j

�
�̂t�j+1 + j�̂+ �̂

�
= �j + �̂ j

�
�̂t+1 + �̂

�
= ln

�
1�  j;t�j+1

�
+ �̂ j�̂:

6.2.3 Economic shocks

We assume that the shocks to our �ve economic and �nancial variables (the in�ation rate, the

nominal wage growth rate, the one-year bond return, the equity return and the housing return)

evolve according to a VAR(1) process. The underlying data are the following time series: for the

in�ation rate, the US Consumer Price Index; for the nominal income growth rate, the US hourly

wage (source for both series: OECD, 2009); for the one-year bond return, the US end-of-year public

debt yield at maturity one year (source: Federal Reserve, 2009); for the equity return, the MSCI

US equity index (source: Datastream, 2009); for the housing return, the OFHEO house price index

(now FHFA index, source: FHFA, 2009). All the series are annual over the period 1976-2005 (30

observations). For each series we take the deviations from the historical average.

Our shocks consist of a deterministic component, which is a linear combination of previous-

year shocks, and a purely random component, given by realisations from i.i.d. innovations. The

estimation of the deterministic component is shown in panel a of Table 7. It is worth pointing out

that no variable in the speci�cation of the equity return is signi�cantly di¤erent from zero; indeed,

a Wald chi-squared test does not reject the hypothesis that equity returns follow a purely random

(white noise) process.
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Table 7. VAR(1) regression

a. Deterministic coe¢ cient estimates (matrix B in (19))

Variable In�ation Wage Bond Equity Housing
In�ation (-1) 0.7864*** 0.3060** 0.3694** -1.5158 -0.8204***

(0.1747) (0.1192) (0.1840) (2.1683) (0.2660)

Wage (-1) 0.0185 0.6609*** -0.0786 0.3825 1.0658***

(0.1930) (0.1317) (0.2033) (2.3953) (0.2938)

Bond (-1) -0.0555 -0.1661** 0.6857*** 1.3535 -0.2609

(0.1104) (0.0753) (0.1163) (1.3700) (0.1681)

Equity (-1) 0.0094 0.0125 0.0252 -0.0247 0.0119

(0.0148) (0.0101) (0.01554) (0.1831) (0.0225)

Housing (-1) 0.2903*** 0.0957* 0.1533** -1.0446 0.6839***

(0.0779) (0.0531) (0.0821) (0.9669) (0.1186)

Wald chi-squared 149.1552 233.2539 171.2329 3.9514 93.5409

p-value 0.0000 0.0000 0.0000 0.5564 0.0000

Notes: standard deviations in parentheses.

***: signi�cant at 1%; **: signi�cant at 5%; *: signi�cant at 10%

Wald chi-squared: test on the joint signi�cance of the coe¢ cients in each column.

The test follows a chi-squared distribution with 5 degrees of freedom.

b. Residual covariances and correlations (%)

Variable In�ation Wage Bond Equity Housing
In�ation 0.0136 50.2306 54.9103 20.8439 -15.2365

Wage 0.0047 0.0063 48.3280 -25.8828 -0.6701

Bond 0.0079 0.0047 0.0151 7.0268 4.7483

Equity 0.0353 -0.0299 0.0125 2.1005 0.2007

Housing -0.0032 -0.0001 0.0010 0.0005 0.0316

Note: correlations in italic; (co-)variances are in non-italic.

6.2.4 The swap curve

Deviations from the average swap returns follow the VADL(1) process of equation (21), in which

each deviation is a function of all the deviations and other exogenous variables observed one month

earlier. The exogenous variables are the innovations to the in�ation rate, wage growth and the bond,

equity and housing returns. Our dataset is a time series of US swap interest rates at any annual

maturity from 1 to 10, plus maturities 12, 15, 20, 25 and 30 (source: Datastream, 2009). Many of

these time series are not available before 1997. To obtain a reasonable number of observations, we

therefore collect annual returns at monthly frequency to cover the period from 1997 to 2006 (120

observations).12

The VADL speci�cation explains 15 variables observed in a given month (the swap return

deviations) with an intercept and 20 variables observed one month earlier (the 15 swap return

deviations, and the innovations to the 5 economic variables). The regression output is available

upon request. For each dependent variable we reject the hypothesis that it follows a white noise

12We ignore observations in later periods to satisfy the assumption of stationarity. After 2006 one enters the
highly unusual situation of the current crisis.
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process, and the R-squared statistic lies between 0:9480 and 0:9967. The shocks are assumed

to follow a multivariate normal distribution, with mean 0 and covariance matrix given by the

covariance among the residuals of the regression. The volatility of the shock at maturity one

(standard deviation 0:0111) is close to that for the shock to one-year bond returns (standard

deviation 0:0123). Shocks at near maturities have very high correlations around 98%; the lowest

correlation we observe �between shocks at maturities 1 and 30 �is however still pretty high (42%).

We use the regression output to generate random swap returns at the observed maturities. The

time period in the model is one year, but the regression is conducted on monthly data. Therefore,

for each period in the simulation we generate a sequence of 12 subsequent swap curves using the

estimated VADL(1) process. Each draw requires as input the monthly innovations to the in�ation

rate, the nominal wage rate and the returns to the one-year bond, equity and housing. However,

only annual innovations are known through the process (19). Thefore, we construct monthly shocks

from annual shocks after noticing that equation (19) coincides with0BBBBBB@
��t0+12
�gt0+12
�bt0+12
�et0+12
�ht0+12

1CCCCCCA = A12

0BBBBBB@
��t0

�gt0

�bt0

�et0

�ht0

1CCCCCCA+
12X
j=1

A12�j

0BBBBBB@
��t0+j
�gt0+j
�bt0+j
�et0+j
�ht0+j

1CCCCCCA
where t0 indicates the month, shocks at t0 = 0 are set to 0, A = B

1
12 is obtained with single value

decomposition and the monthly i.i.d. shocks arise from the (observed) annual i.i.d. shocks,0BBBBBB@
��t0+j
�gt0+j
�bt0+j
�et0+j
�ht0+j

1CCCCCCA =

0@ 12X
j=1

A12�j

1A�1

0BBBBBB@
��t�1
�gt�1
�bt�1
�et�1
�ht�1

1CCCCCCA
under the assumption that the shocks in months t0 + j; j = 1; :::; 12 are identical. We use these

shocks to compute for each month the shocks to the yields at maturity 1-10, 12, 15, 20, 25 and 30

of the swap curve, according to equation (21).

From this sequence of 12 swap curve yields we consider the last one (say, the December one) in

the simulations. We then adopt a linear interpolation over the available swap rates to obtain swap

rates at any discrete maturity between 1 and 30. Rates at maturity longer than 30 are set equal to

the rate at maturity 30. Swap returns are then built as the sum of the VADL(1) realisations and

a vector of constants, derived from0BBBB@
rs1
rs2
...

rsD

1CCCCA =

0BBBB@
rb1
rb1
...

rb1

1CCCCA+
0BBBB@

rs1;t � rb1;t
rs2;t � rb1;t

...

rsD;t � rb1;t

1CCCCA ; (37)

where rb1 is the calibrated average one-year bond return (see Table 2), and the di¤erence r
s
k;t � rb1;t

is the sample average of the swap return at maturity k in excess of the sample average of the one

year bond return. We use this formula to make swap returns in magnitude comparable to the

calibrated average one-year bond return.
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6.2.5 The bond yield curve

We assume that the one-year interest rate coincides with the one-year bond return, while the

interest rates for other maturities follow a similar process as for the swap curve. Our dataset is a

time series of US yield returns at maturities 2, 3, 5, 7, 10, 20 and 30 (the only observed maturities

�source is Federal Reserve, 2009). To make the comparison with the swap curve consistent, we

take the same sample period (from 1997 to 2006) and frequency (monthly), even though we could

use a longer series in this case. In the sample there are occasionally missing values for the yields

at maturities 20 and 30. We impute the missing values using a linear interpolation method.

The regression output is available upon request. As for the swap curve, we obtain large R-

squared statistics (between 0:9104 and 0:9958) and always reject the hypothesis that the interest

rates follow a white noise process. Shocks at near maturities are highly correlated (usually above

95%, and never below 46%); they exhibit lower volatility than the corresponding shocks to the swap

curve, especially at longer maturities. For instance, the standard deviation of the yield return at

maturity 30 is only 53% of the standard deviation of the swap return at the same maturity. Both

volatilities are, however, small compared to those of one-year bond returns.

We use the regression output to generate random yield returns at the observed maturities. As

for the swap curve, for each year of the simulation we generate a sequence of 12 random yield

returns, and make use of only the last realisation. We then adopt a linear interpolation over

these yields to obtain the interest rates at any discrete maturity between 1 and 30. Interest rates

at maturities longer than 30 are set equal to the interest rate at maturity 30. Yield returns at

maturity k � 2 are then built as the sum of the VADL(1) realisations and a vector of constants,

derived from 0BBBB@
rb2
rb3
...

rbD

1CCCCA=
0BBBB@

rb1
rb1
...

rb1

1CCCCA+
0BBBB@

rb2;t � rb1;t
rb3;t � rb1;t

...

rbD;t � rb1;t

1CCCCA ;

where rb1 is the average one-year bond return, and the di¤erence r
b
k;t � rb1;t is the sample average of

the yield return at maturity k in excess of the sample average of the one-year bond return. We use

this formula to make the bond yield curve at the one-year maturity comparable to the one-year

bond return calibrated earlier. The average bond yield curve shows a quadratic-looking pro�le

similar to that of the average swap curve, although at each maturity the return is around 0:5%

points lower than the corresponding return of the average swap curve.
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