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ABSTRACT

The work proposes a comparison between the Lee-Carter and the Cairns-Blake-
Dowd mortality models, employing Italian data. The mortality projections span
the period 2016-2060. The mortality data come from the Italian National Statis-
tics Institute (ISTAT) database, and span the period 1980-2012. The results were
simply numerically and graphically compared showing differences between models
that evidence the existence of a model risk in annuity pension market. Moreover the
life-expectancy projections of the model were compared to the ISTAT benchmark,
showing divergences in prevision for the dynamic of the mortality gap between gen-
ders. The latter result demonstrates the presence of a data-choosing process risk,
and reveals the importance of disclosure in using stochastic models. Moreover, the
comparison is observed in the pension policy scenario, taking into consideration the
role played by mortality models with the transformation coefficients.

Introduction

The present work attempts to show how the choice of the model, of the dataset and
of the application methods adopted, influence the outcomes. For this reason, I imple-
mented two different stochastic mortality models, using the same dataset referred to the
Italian population, and I compared the results taking into consideration the projections
provided by ISTAT as a benchmark. In particular, I chose to compare among others,
the Lee-Carter and the Cairns-Blake-Dowd models, since they represent two different
parametric families of mortality models; one considering the logarithms of the central
rate of mortality as the dependent variable, and the other the logit transformation of the
mortality odds. Moreover, I considered ISTAT projections obtained with the Lee-Carter
model: this allowed me to scrutinize the role of dataset decisions. I estimated and pro-
jected the parameters of the models, in order to forecast the future mortality trends for
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the Italian male and female populations. More specifically, on one hand I used the Excel
spreadsheet named ’CBD model M5 estimation.xlsm’; provided by A. Cairns, D. Blake
and K. Dowd on their model web site’. On the other hand, I applied the Lee-Carter
model using Matlab; a user-friendly code is presented in the Appendix, indeed. The
comparison of results stressed the differences due to the features of the models and to
the stream of data chosen: the outcomes of the models when compared to the benchmark
showed better improvements in the mortality gap between genders than the one proposed
by ISTAT. Furthermore, the analysis is observed considering the pension policy scenario,
without having any presumption of completeness, but instead aiming to be one of the
first little steps for future researches in the field of mortality model risk in pensions.

1 The role of mortality models in pensions

The past two decades have seen an extraordinary evolution in European pension pol-
icy, characterized by new pension reforms [Whitehouse and Queisser, 2012] aiming to fit
within the economic and social changes, having the purposes of income redistribution,
financial sustainability, and risk sharing among generations. For this reason, forecast
of the pensioners’ remaining life expectancy |Whitchouse, 2007| became an important
information for estimating the pension expenditure. In fact, the latter is influenced by
the longevity risk, that derives from improvements in mortality trend, which determine a
systematic deviations of the number of deaths from its expected values. In the early 90’s,
the Ttalian pension system was organized following a pay-as-you-go defined-benefit (DB)
pension plan, without any specific treatment for the longevity risk. The retirement ages
were 60 for men and 55 for women, and only with the Riforma Amato (1992) did the
retirement ages skip to 65 and 60, respectively for men and women. Since the pension
structure was unfair and financially unsustainable, in 1995 - under the technical govern-
ment of Dini (Law 335/95)- the Italian pension system partially switched from a DB to a
notional defined-contribution (NDC) plan, keeping constant the pay-as-you-go structure
|Brambilla, 2012]. This reform was a kind of revolution for the Italian pension system
due also to the fact that, by the introduction of the notional accounts, the retirement an-
nuities were for the first time correlated with the evolution of the average life-expectancy.
The NDC scheme allows employees to accumulate - at the expected GDP growth rate -
their working contributions on a notional account that will be converted into an annuity
at retirement. In particular, the annuity is computed by adopting the so-called trans-
formation coefficients [Fornero and Castellino, 2001|, which take into consideration the
average remaining life expectancy.

Piscopo |2011] presented the following formulation for the computation of NDC pen-
sion benefits at retirement age x:

P(x) = [ca + ¢ (1 +gj)} Oz (1)
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where ¢; is the contribution paid by the worker at seniority ¢, a is the seniority at
retirement (i.e., the number of years of the working life), g; is the geometric mean of
the nominal GDP growth rate calculated according to the past 5 years observations
preceding the seniority year j; finally, §, is the retirement transformation coefficient at
age x, generalized by the formula:
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representing the inverse of the expected present value of an unitary annuity revertible
to the spouse. In the formula above T, is the remaining lifetime for an individual aged
x, with ) representing the conventional final age. Furthermore, 17, _, represents the
indicator random variable that expresses whether an individual aged x at time 0 will
survive at least ¢ more years. In particular:

Bllr,.,] = Elp,] = = 3

where ;p, is the survival probability at age x + t, conditional on being alive at age x
and [, is the number of survivors at age x. In the Italian case, the formulae adopted for
computing pension benefits are slightly different from the ones presented above. How-
ever, the Italian presentation will not be discussed here, since it is not strictly necessary
for understanding the role of projected death probabilities in pensions?. It is noticeable
that mortality projections directly alter the annuity values [Tang et al., 2015].

Projected death probabilities are usually provided by stochastic mortality models. For
this reason, the choice of the model which could better fit the data is truly important.
Cairns et al. [2009] compared eight existing mortality models on the basis of the Bayesian
Information Criterion (BIC); showing that on the same dataset, one model can fit bet-
ter than others. Also Yang et al. [2010] studied the impact of model risk on annuity
pricing by comparing existing mortality models, taking in consideration the BIC and
also the Mean Absolute Percentage Error (MAPE) when making comparison. Moreover,
the magnitude of the stream of data (i.e., the time interval of the dataset) is another
important variable affecting results as well as the approach adopted in the application
of mortality models [Danesi et al., 2015]. The comparison of the Lee-Carter and the
Cairns-Blake-Dowd model that will be presented hereafter, has been conducted without
considering the BIC and the MAPE. The results of the models were simply compared in
order to analyze the existence and the quality of the differences. Moreover, the outcomes
of the models were compared to the life-expectancy projection provided by ISTAT, since
the institution have probably adopted a different dataset from the one used for the ap-
plication of the models. This, it seems, could pose interesting outlooks on the role of
data choosing process.

’Detailed information on Ttalian formuale are provided by Piscopo [2011].



2 Data and analysis presentation

The datasets related to the Italian population were provided by ISTAT? (Mortality Ta-
bles), for both men and women. In particular, I considered data over the time horizon
1980-2012; I chose to discard older data in order to avoid biases due to previous histor-
ical events that could have affected results (e.g. discoveries on cardiovascular diseases,
occurred in the seventies).

In the original form, the data were provided in the form of the common life tables.
However, the LC and the CBD models required to collect the data into matrices having
as row index the age x and as column index the year ¢. In particular, the Lee-Carter
model requires the actuarial variables d, and L,; whereas the Cairns-Blake-Dowd model
needs only the variable g, referring to the probability of death. Furthermore, the last
age w is considered, which will be different for each model. In particular, w = 105 for
the Lee-Carter model and w = 110 for the Cairns-Blake-Dowd model. The life tables
referring to the two models have been closed at different ages, since the CBD model is a
good mortality predictor at higher ages. However, this choice does not have implications
on the analysis and comparison of results since the life-expectancies are observed at the
age x = 65. Moreover, the male and female populations were separately considered with
exception to the European legislation that instead suggested the use of a genders unified
life table.

3 An application of the Lee-Carter model

I took into consideration the original formulation of Lee and Carter [1992], represented
by the following model equation:

mx(t) — eaz+ﬁzkt+sz,t (4)

where m,(t) represents the central rate of mortality at age = and at time ¢, and it has

been computed by the formula:
T La()
with d;(t) and L,(t) variables available from the dataset provided by ISTAT. Further-

more, these variables were considered for each age x in the interval 0 < z < 105, and for
each year ¢ in the interval 1980 < ¢ < 2012.

For the sake of transparency, the model was implemented by adopting its logarithms
transformation:
In mz(t) =ag + 5$kt + Ext

with the following parameter interpretations:

3http://demo.istat.it /unitav2012 /index.html?lingua=ita (Observed last time in January 2015)
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k; the time index representing the level of mortality at time ¢;

e «, representing the average trend of mortality on the time horizon at age x;

B representing a measure of the sensitiveness in movement from the parameter k;

the homoskedastic error therm e,4, that incorporates the historical trends not

considered by the model. It is normally distributed with mean 0 and variance o2.

Parameter estimations

The parameter estimation was computed with respect to the Ordinary Least Square
(OLS) estimation method. Moreover, two constraints were considered in order to be able
to find a unique solution for the parameters.

Constraints: .
Tm n
d be=1  and Y k=0 (5)
T=T1 t=t1

In order to obtain the estimation for the variable &,, it was necessary to compute the
partial derivative of the equation LS(«,3,k) = > >, (In[my(t)] — ap — Boke)? , with
respect to ay. Then, by setting the partial derivative equal to 0 we get:

o= e > () (6)

n - t1 + 1
with t = t1,...,t, = 1980, ...,2012 and = = x4, ...,z = 0, ..., 105.

As it is expressed by the equation (6), the estimation for the first parameter o, was given
by the average of the logarithms of the central rate of mortality over time ¢. Furthermore,
the estimations of ﬂx and k:t for the parameters (8, and k; were obtained by adopting
the singular value decomposition of the matrix Z of elements (In[myg, (t;)] — ag,), with
i=0,..105 and j = 1980,...2012. In particular, given the decomposition Z = USVT,
the parameters have been estimated as it follows:
by = 7
Zj:,:nl zr1+1 ulj ( )

Tm—21+1
- ( > uU)alT )

where:

e U represents the eigenvector corresponding to the biggest eigenvalue of the matrix
VAR

e 7 is the eigenvector corresponding to the biggest eigenvalue of the matrix Z7Z;



e finally, 5} is a single-element vector corresponding to the biggest eigenvalue of either
U or V matrices.

At this point, many scholars [Barugola and Maccheroni, 2014] usually recalibrate the time
index in order to reproduce the observed number of deaths in a given year. However,
the recalibration was avoided here without implication on results. Finally, the estimated
parameters were computed as follows, due to the fact that the estimated parameters ke
did not satisfy the constraint at (5), and therefore needed to be adjusted:

al =, + bk (9)
Tm—x1+1
b;:z“)m( > 81j> (10)
j=1
Tm—x1+1
k= (ke—k)( ) by (11)
J=1

where k = ﬁ Zi’;l k; is the arithmetic average of ky with respect to time ¢, and

(Z;ﬁf““ 31j> is simply the sum of all the estimated b, which sum to 1.
For the sake of simplicity, all the numbers referring to the parameter estimations will
not be reported. However, the figures below will show the trend and the path of the
estimated parameters o}, 85 and k. In the Figures (1) and (2) below, the decreasing
path of the graphs referred to the parameter k;, shows the overall mortality improve-
ment occurred over the considered historical period. Moreover, the graphs referred to
the parameter 37 show the differences between genders. In particular, the male popu-
lation had a mortality improvement, starting from the age z = 30 to the age x = 65
(i.e. increasing path of the male curve at adult ages), whereas the female population had
greater improvements in the range of ages 60 < z < 85 (i.e. old ages). Moreover, both
genders present significative variations for the parameter at birth.

Figure 1: The LC estimated trend of o, 8% and kf parameters (Male).
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Figure 2: The LC estimated trend of o, 8% and k; parameters (Female).
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Forecasting mortality

The following Random Walk with Drift equation was adopted in order to project the time
index ky:
ki =ki—1+d+et with ezt ~N(0,1); E(gs,e4) =0 (12)

where the drift d was estimated by the formula:

kT — ki)

;(
d= == (13)

with kT and k] respectively given by the elements k1, and k11 of the estimated vector
ki = [k, o B

After having solved the equation (12) of the RWD model, I projected the parameter
k; at time T + At as it follows:

kryas = kb + (At)d + VAte, (14)
and taking the expected value we get:
Ekryaclky, ... k7] = ki + (At)d

At this point, it was possible to get the equation for the projection of the central rates
of mortality as it follows:

In [1he read] = a + 05 [k + (At)d]

and so

Pt o = €0 [k5+(A0)d] (15)

Finally, the central mortality rates were transformed into probabilities, by adopting the
Reed and Merrell [1939] method. The relation is expressed by the equation:

) =1— efn(mz(t))—n30.008(mz(t))2 (16)

nqx




The results of the Lee-Carter model

The graphs in the Figure 3 below show the forecast mortality trends (logarithmic scale)
for different years into the projection interval 2016 <t < 2060, respectively for the male
and the female populations.

Figure 3: The Lee-Carter Male (left) and Female (right) mortality projection.
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The mortality curves, are one under the other following the same order of the legend
presented in the figures. This dynamic, shows the forecast mortality improvements over
the projection interval. Lower curves are associated to lower death probabilities at each
age, indeed.

4 An application of the Cairns-Blake-Dowd model

I considered the original formulation of the model provided by Cairns et al. [2006]. More-
over, since the model is a good predictor of the mortality evolution at higher ages; the
age x examined in the interval 0 < x < 110 over the time horizon 1980-2012. For this
reason, the mortality projections will refer exclusively to every age x > 60. The model
equation adopted is the following:

In [Zx,t] = k,gl) + k?) (x —Z) + ey
Tt

where

o k§1) and k§2) are two stochastic processes and represent the two time indexes of the
model;

® ¢.: and p;; represent respectively the death and the survival probability, at time

t for an individual aged x;

dnt | =1n (¢,) = logit qu+ is the logit transformation of g, ¢, with ¢, represent-

e In =
Pzx,t

ing the mortality odds ;



e T is the central age over the range of ages, then z = 55 .

® c, ¢ is the error term that encloses the historical trend that the model does not
express. All the error terms are i.i.d following the Normal distribution with mean

0 and variance o2.

Moreover, the time index kzgl) is the intercept of the model, it affects every age in the

same way and it represents the level of mortality at time ¢. More precisely, if it declines
over time, it means that the mortality rate have been decreasing over time at all ages.
The time index k:,g2) represents the slope of the model: every age is differently affected
by this parameter. For instance, if during the fitting period, the mortality improvements
have been greater at lower ages than at higher ages, the slope period term kt(2) would be
increasing over time. In such a case, the plot of the logit of death probabilities against
age would become more steep as it shifts downwards over time [Pitacco et al., 2009].The
model does not require additional constraints. For the estimation and projection of the

parameters, refer to the CBD model website* provided by Cairns et al.

The Figures (4) and (5) below, will show the trends of the estimated parameters k

i

Figure 4: The CBD estimated trend of the time indexes /Acgl) and l;:§2) (Male).
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Figure 5: The CBD estimated trend of the time indexes ]%gl) and 1%152) (Female).
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As it is shown in the Figure (4) above, the trend of the estimated parameter 12:51)
is decreasing over time, which corroborates the idea that the overall level of mortality
has been improving over the considered time interval. On the other hand, the trend of

the parameter /;:,52) had been quite stable until 2002, when it increased. The authors of

the model propose th following interpretation of the increasing path of the l;:t@) trend: it
shows that the mortality improvements - in absolute terms - have been greater at lower
ages than at higher ones [Pitacco et al., 2009]. This means that mortality has improved
more for ages from 60 to 70 than at higher ages (in absolute terms).

The results of the Cairns-Balke-Dowd model

The graphs in the Figures (6) below, show the forecast mortality trend, respectively for
the male and the female populations for every age 60 < z < 110.

Figure 6: Cairns-Blake-Dowd mortality projection: Male (left) and Female (right).
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As it can be seen in the figures, the mortality curves for both genders show increasing
peaks at the age of 65 for women and at the age of 70 for men. These peaks are
anomalies that certainly influence the computation of the forecast life-expectancies, and
are probably due to the way by which the model has worked the data. The CBD forecast
mortality curves are one under the other, stressing the mortality improvements that
occurred at each year over the projection horizon. Moreover, it can be seen that, the
curve referring to the year 2016 starts from the level of -6 for women and -5 for men,
stressing the differences in mortality between genders.

5 Comparison of results and final considerations

Even though the Lee-Carter mortality trends cover all ages x in the interval 0 < z < 105,
the comparison of results scrutinizes the interval of ages adopted for the Cairns-Blake-
Dowd model application, which is 60 < x < 110. For this reason, as demonstrated in
the graphs below, the CBD curves will be longer than the LC ones, representing also the
ages from 106 to 110 that the Lee-Carter model does not consider. Moreover, I decided
to take a sample of four different years in the projection horizon 2016-2060, starting from
the year 2024 with intervals of 12 years between them.

10



Figure 7: CBD vs LC: Female (left) and Male (right) mortality trends
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On one hand, the Cairns-Blake-Dowd curves in the female case suggest greater im-
provements in mortality at the age of 60 than the ones provided by the Lee-Carter curves.
Furthermore, the Lee-Carter curves for the set of ages 70 < x < 80 are slightly convex
compared with the CBD ones. The Lee-Carter convex dynamics in that interval suggest
better mortality perspectives with respect to the ones proposed by the Cairns-Blake-
Dowd model. On the other hand, the model curves of the male case show errors in the
paths, due to the iteration and to the logarithmic transformation processes. The CBD
curves present an error peak at the age of 70 which becomes more evident from year to
year. The Lee-Carter curves present errors at the age of 93. However, the curves of both
models converge at almost all ages, with some divergences at the age of 60 even though
smaller than the female case ones.

Concerning the benchmark, it was possible to compare the application results exclu-
sively referring to the life-expectancies, since ISTAT does not disclose the data related to
the death probability projections. The life-expectancy projections have been computed
by constructing the projected life tables for both men and women, adopting the common
actuarial functions.

Table (1) below, shows the forecast life-expectancy for women and men respectively.
Moreover, the data have been collected considering time steps of eight years, in order
to stress the improvements in the life span. In the female case, it is possible to observe
that the Lee-Carter curve converges with the ISTAT benchmark particularly in the first
half of the projection horizon and starts diverging from the year 2040, with greater im-
provements suggested by the LC curve. However, it is important to note that both the
Lee-Carter and the Cairns-Blake-Dowd models underestimate life-expectancy in the first
years of the projection horizon and overestimate in the last ones with respect to [STAT.
Looking at the numbers in Table (1) below, the differences between the models and the
benchmark are always less than 11 months which is the highest divergence presented by
the CBD model in the year 2016.

11



Table 1: Life-Expectancy projections at age 65: a comparison of results.

Female (Aged 65) Male (Aged 65)
Year LC CBD ISTAT || Year LC CBD ISTAT

2016 225 21.8 22.7 2016 19.0 18.6 19.1
2024 236 23.0 23.8 2024 20.1 198 20.0
2032 246 24.1 24.7 2032 211 209 20.9
2040 25.6 25.2 25.5 2040 22.1  22.0 21.7
2048 26.6 26.2 26.3 2048 23.0 23.0 22.3
2056 27.5 27.2 27.5 2056 23.9 24.0 22.9
2060 279 27.6 27.3 2060 24.3 244 23.2

Figure (8) below, graphically represents the comparisons of ISTAT benchmark and
the life-expectancy projections provided by the models. In the male graph below, it is
possible to observe that, even though the CBD curve diverge from the others until the
year 2036 with a decreasing difference, it is also noticeable that from that year, it con-
verges almost perfectly with the Lee-Carter curve. Moreover, starting from the year 2030
(2028 for the LC curve) the curves of both the models increasingly diverge -with a similar
dynamic- with respect to the ISTAT curve. This result buttresses the evidence that the
gap between women and men is expected to decrease over the projection horizon. These
divergences between the benchmark and the models emphasize the existence of a data
choosing process risk (i.e. a different dataset leads to different results). Moreover it is
reasonable to ask: which is the correct dataset to use!?

Figure 8: Life-Expectancy comparisons
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Finally, it is important to recall that the divergences between the models are due
to the differences between them, and this underlines the existence of the model risk in
mortality projections. Keeping constant the chosen dataset, different models lead to
different outcomes and so the choice of the result that better fit the reality represent a

12



risk in itself. The differences between the results of models and the ISTAT benchmark
could be related to the fact that ISTAT does not provide the model specification, the
procedure adopted in order to estimate and forecast the parameters neither does it give
information about the dataset used (intervals of ages and years) for the Lee-Carter model
implementation. Needless to say that with no certainty, it is possible to assert that all
these features perfectly coincide with the ones characterizing the applications of both
the Lee-Carter and the Cairns-Blake-Dowd models that were proposed. In this case,
the compared results showed how the choice of the dataset directly influence the quality
and the features of the model outcomes (different datasets lead to different outcomes
ceteris paribus), reveling the existence of a data-choosing process risk. The importance
of methodology disclosure is usually underestimated and conversely, this could help re-
searchers to improve models and people in general for better comprehension. It is for
this reason therefore that I chose to disclose meticulously (sometimes tediously) all the
passages of the procedures.

Appendix

The Lee-Carter Matlab code

The data related to the variables L(z,t) and d(z,t) were imported to Matlab, using the
function zlsread. Then, the users need to first collect the data into an excel spreadsheet.
The first two lines of the code represent an example of what I had explained above. The
variable ¢t and T represent the extremes of the projection horizon (2012-2060 in our case),
so the users can properly change them as they need.

Figure 9: Lee-Carter Matlab code: Part 1

L xt = xlsread('female-dataset.xls', 'L(x,t)’, 107');
d xt = xlsread('female-dataset.xls', 'd(x.t}’', 7 B
t = 2012:
T = 2060:

deltaTl = 1: (I-t):

[m,n]==size(d_xt):
I = ones{m,n);
Ia = ones(l,n);

Ip = ones(l, (T-t)):

m_xt=d xt./L_xt;
Inm xt=log(m xt);

a_xl=mean(lnm xt,2):

Z=1lnm xt-{a x1*Ia);

[US V] = svd(Z):
ul=U(:,1):
vi=vV{:,1});

sum ul=sum({ul);
81=5(1,1):

b_xl=ul/sum ul;
k tl=sl¥*sum ul*vl';
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sumb_x1=sum(b_x1);

while sumb x1 ~=1
disp('It does not satisfies the model constraint sum{b x1)=1.' )}
disp{'It needs to be recalibrated.'})
break

end

sumk tl=sum(k tl):
[Fwhile sumk tl ~=0

disp('It do not satisfies the model constraint sum(k tl)=0."')
disp('It needs to be recalibrated.'}
break

end

meank tl=mean(k_tl);

a x=a x1 + b xl*meank tl;
b_x=b_x1/sumb_x1;

k t={(k_tl - meank tl*Ta)*sum(b x1):

sunb_x=sum (b x);
sumk_ t=sum{k T);

kT = k_t(l,length(k t)}:

k1= k t{1,1);

d= (kT - kl1)/length(k T):

k_projected= kT*Ip + deltaT#*d:
Inm xt proj = a_x*Ip + b _x*k projected;
m xt proj = exp(lnm xt proj):

Finally, it will be asked the user to choose the name of the Excel file on which all
the outputs will be located. Please, manage the range of the excel data locations in
accordance with the stream of data imported.

Figure 10: Lee-Carter Matlab code: Part 2

file = input('Please, file name for the model results: '");
Xlswrite (file,Z, "B2: Al
xlswrite (file,a x,2,'
xlswrite (file,b x,2,"
xlswrite (file,k t,3,"'B2:4H
xlawrite (file, k projected, 4, 'B2:LW2");
xlswrite (file,lnm xt proj,5,'

xlswrite (file,m Xt proj, &, "B2:RN1
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