

Know more, spend more? The impact of financial literacy on household consumption

Milena Dinkova (UU, Netspar), Adriaan Kalwij (UU, Netspar), Rob Alessie (RUG, Netspar)

Introduction

- What is financial literacy (FL)?
- The role of self-assessing financial knowledge
- And why relate FL to consumption?
- RQ: What is the impact of financial literacy on household consumption levels?

Model

- Life-cycle setting
- Financial literacy enters through intertemporal budget constraint
- Deriving closed-form equation for consumption using logarithmic preferences

Some math

Closed-form solution

$$c_{t} = \frac{(1+r)}{L-t+1} A_{t-1} + \frac{y}{L-t+1} \sum_{\tau=t}^{L} \left(\frac{1}{1+r}\right)^{\tau-t}$$

Derivative wrt r

$$\frac{dc_t}{dr} = \frac{1}{L - t + 1} A_{t-1} - \frac{y(1 + r - (1 + r)^{t-L})}{r^2(L - t + 1)} + \frac{y(1 - (t - L)(1 + r)^{t-L-1})}{r(L - t + 1)}$$

Model

Theoretical prediction:

Highly literate have a steeper consumption profile than low literacy individuals, keeping age constant.

Consumption and financial literacy

Data

- Data LISS panel (CentERdata)
 - Financial literacy: 1 wave (2009), 3298 households
 - Consumption: 4 waves (2009-2015), more than 4000 households per wave
- Data on individual level of financial literacy, individual responses to household consumption

Testing financial literacy

- Interest compounding
- Inflation
- Risk diversification
- Bond prices and interest rates

How much people know

Share of respondents by number of Correct, Incorrect and DK answers (n=3060)

	None	1	2	3	All four	Total
Correct	5,98	13,56	37,68	30,31	12,48	2,30
Incorrect	49,85	36,84	11,8	1,48	0,03	0,65
DK	42,06	27,13	23,11	5,04	2,66	0,99
Refuse	96,98	0,99	0,81	0,17	1,05	0,07

How much people know

Share of respondents by number of Correct, Incorrect and DK answers (n=3060)

	None	1	2	3	All four	Tota
Correct	5,98	13,56	37,68	30,31	12,48	2,30
Incorrect	49,85	36,84	11,8	1,48	0,03	0,65
DK	42,06	27,13	23,11	5,04	2,66	0,99
Refuse	96,98	0,99	0,81	0,17	1,05	0,07

How much people know

Share of respondents by number of Correct, Incorrect and DK answers (n=3060)

	None	1	2	3	All four	Total
Correct	5,98	13,56	37,68	30,31	12,48	2,30
Incorrect	49,85	36,84	11,8	1,48	0,03	0,65
DK	42,06	27,13	(23,11)	5,04	2,66	0,99
Refuse	96,98	0,99	0,81	0,17	1,05	0,07

Gender and FL

Percentage share of correct answers by gender (n=3062)

	Interest	Inflation	Risk	Bonds
Female (n=1624)				
Correct	87,78	73,40	32,01	12,86
Incorrect	5,59	11,47	16,47	30,38
DK	5,01	13,21	49,59	54,89
Refuse	1,63	1,92	1,92	1,86
Male (n=1438)				
Correct	91,27	84,72	54,70	25,99
Incorrect	4,76	8,33	14,88	38,29
DK	2,84	5,56	28,70	34,79
Refuse	1,12	1,39	1,72	0,93

Gender and FL

Percentage share of correct answers by gender (n=3062)

	Interest Inflation		Risk	Bonds
Female (n=1624)				
Correct	87,78	73,40	32,01	12,86
Incorrect	5,59	11,4/	16,4/	30,38
DK	5,01	13,21	49,59	54,89
Refuse	1,63	1,92	1,92	1,86
Male (n=1438)				
Correct	91,27	84,72	54,70	25,99
Incorrect	4,76	8,33	14,88	38,29
DK	2,84	5,56	28,70	34,79
Refuse	1,12	1,39	1,72	0,93

Gender and FL

Percentage share of correct answers by gender (n=3062)

	Interest	Inflation	Risk	Bonds
Female (n=1624)				
Correct	87,78	73,40	32,01	12,86
Incorrect	5,59	11,47	16,47	30,38
DK	5,01	13,21	49,59	54,89
Refuse	1,63	1,92	1,92	1,86
Male (n=1438)				
Correct	91,27	84,72	54,70	25,99
Incorrect	4,76	8,33	14,88	38,29
DK	2,84	5,56	28,70	34,79
Refuse	1,12	1,39	1,72	0,93

Household consumption and FL

Estimation procedure (1)

Stage 1:

- Estimating the financial literacy index using ordered probit
- And predicting the probability to assess own FL above median, $Pr(SAFL_i > 4)$

Estimation procedure (2)

Stage 2: Estimating the impact of financial literacy on...

- the probability to invest in stocks and bonds
- household consumption levels

Creating index

Estimating the FL index - first stage				
	(1)	(2)	(3)	(4)
VARIABLES	single F	single M	couples F	couples M
Women's Score on Q1	0.283***		0.112	
	(0.0830)		(0.0794)	
Women's Score on Q2	0.151**		0.0621	
	(0.0646)		(0.0570)	
Women's Score on Q3	0.120*		0.252***	
	(0.0660)		(0.0535)	
Women's Score on Q4	0.163**		0.204***	
	(0.0831)		(0.0622)	
Low education dummy women	-0.0238		-0.110**	
	(0.0770)		(0.0558)	
High education dummy women	-0.297***		-0.151**	
	(0.0718)		(0.0616)	
Men's Score on Q1		0.345**		0.286***
		(0.141)		(0.0945)
Men's Score on Q2		-0.0162		0.0347
Marila Casara an O2		(0.113)		(0.0754)
Men's Score on Q3		0.208***		0.314***
Men's Score on Q4		(0.0791) 0.436***		(0.0498) 0.427***
Men's score on Q4				(0.0536)
Low advication dummy man		(0.0806) 0.0914		-0.179***
Low education dummy men		(0.0873)		(0.0555)
High education dummy men		0.0971		0.0275
riigh education duminy men		(0.0843)		(0.0573)
		(0.0043)		(0.0373)
Observations	1,440	986	2,176	2,176

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
Note that we controlled for age
household size and HH position

Creating index

Estimating the FL index - first stage

	(1)	(2)	(3)	(4)
VARIABLES	single F	single M	couples F	couples M
Women's Score on Q1	0.283***		0.112	
	(0.0830)		(0.0794)	
Women's Score on Q2	0.151**		0.0621	
	(0.0646)		(0.0570)	
Women's Score on Q3	0.120*		0.252***	
	(0.0660)		(0.0535)	
Women's Score on Q4	0.163**		0.204***	
	(0.0831)		(0.0622)	
Low education dummy women	-0.0238		-0.110**	
	(0.0770)		(0.0558)	
High education dummy women	-0.297***		-0.151**	
	(0.0718)		(0.0616)	
Men's Score on Q1		0.345**		0.286***
		(0.141)		(0.0945)
Men's Score on Q2		-0.0162		0.0347
		(0.113)		(0.0754)
Men's Score on Q3		0.208***		0.314***
•		(0.0791)		(0.0498)
Men's Score on Q4		0.436***		0.427***
•		(0.0806)		(0.0536)
Low education dummy men		0.0914		-0.179***
zon caacanon aanni, men		(0.0873)		(0.0555)
High education dummy men		0.0971		0.0275
		(0.0843)		(0.0573)
		(0.0043)		(0.0373)
Observations	1,440	986	2,176	2,176

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 Note that we controlled for age

FL and investing

Marginal effects on D/Invest)						
Marginal effects on P(Invest)	(1)	(2)	(2)	(4)	/5\	(c)
	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	singles F	singles M	couples	singles F	singles M	couples
Pr(SAFL>4) women	1.301***		0.383**	1.231***		0.386**
		Without				
	(0.301)	income	(0.171)	(0.295)	With income	(0.172)
log(age woman)	0.0920*		0.238	0.0820		0.253*
	(0.0521)		(0.147)	(0.0521)		(0.145)
Low education dummy women	0.0149		-0.0468	0.0253		-0.0425
	(0.0419)		(0.0288)	(0.0419)		(0.0287)
High education dummy women	0.181***		-0.00103	0.162***		-0.000894
	(0.0438)		(0.0281)	(0.0423)		(0.0278)
Pr(SAFL>4) men		1.297***	0.230*		1.327***	0.222*
		(0.256)	(0.132)		(0.260)	(0.131)
log(age man)		0.0837	-0.0281		0.0780	-0.0459
		(0.0711)	(0.141)		(0.0718)	(0.138)
Low education dummy men		-0.0701	0.0662**		-0.0645	0.0648**
		(0.0576)	(0.0324)		(0.0573)	(0.0324)
High education dummy men		0.0206	0.0790***		0.000857	0.0757***
·		(0.0512)	(0.0269)		(0.0532)	(0.0262)
Observations	910	674	877	910	674	877

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note that we controlled for position in the asset distribution

FL and investing

Marginal effects on P(Invest)

ivial gillar effects on P(ilivest)	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	singles F	singles M	couples	singles F	singles M	couples
Pr(SAFL>4) women	1.301***		0.383**	1.231***		0.386**
	(0.301)		(0.171)	(0.295)		(0.172)
log(age woman)	0.0920*		0.238	0.0820		0.253*
	(0.0521)		(0.147)	(0.0521)		(0.145)
Low education dummy women	0.0149		-0.0468	0.0253		-0.0425
	(0.0419)		(0.0288)	(0.0419)		(0.0287)
High education dummy women	0.181***		-0.00103	0.162***		-0.000894
	(0.0438)		(0.0281)	(0.0423)		(0.0278)
Pr(SAFL>4) men		1.297***	0.230*		1.327***	0.222*
		(0.256)	(0.132)		(0.260)	(0.131)
log(age man)		0.0837	-0.0281		0.0780	-0.0459
		(0.0711)	(0.141)		(0.0718)	(0.138)
Low education dummy men		-0.0701	0.0662**		-0.0645	0.0648**
		(0.0576)	(0.0324)		(0.0573)	(0.0324)
High education dummy men		0.0206	0.0790***		0.000857	0.0757***
		(0.0512)	(0.0269)		(0.0532)	(0.0262)
Observations	910	674	877	910	674	877

Standard errors in parentheses

Note that we controlled for position in the asset distribution

^{***} p<0.01, ** p<0.05, * p<0.1

Consumption

Pooled OLS Estimations of closed form solu	tion for consumption					
	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	singles F	singles M	couples	singles F	singles M	couples
Pr(SAFL>4) women	0.865**		0.222	0.599*	~	-0.0378
		Without			With	
		income			income	
	(0.424)		(0.318)	(0.339)		(0.300)
log(age woman)	0.181*		-0.751***	0.0557		-0.794***
	(0.0983)		(0.290)	(0.0795)		(0.258)
Low education dummy women	-0.0827		0.0229	0.00449		0.0587
	(0.0552)		(0.0605)	(0.0492)		(0.0529)
High education dummy women	0.188***		0.122**	0.0674		0.117**
	(0.0720)		(0.0583)	(0.0604)		(0.0537)
Pr(SAFL>4) men		0.433	0.905***		0.256	0.751***
		(0.311)	(0.218)		(0.247)	(0.200)
log(age man)		0.102	0.367		-0.0488	0.443*
		(0.0742)	(0.297)		(0.0550)	(0.264)
Low education dummy men		-0.135**	0.0702		-0.0759*	0.0926*
		(0.0593)	(0.0571)		(0.0437)	(0.0521)
High education dummy men		0.0480	0.219***		-0.0449	0.159***
		(0.0606)	(0.0540)		(0.0455)	(0.0487)
Constant	5.812***	6.498***	7.893***	6.571***	7.230***	8.098***
	(0.498)	(0.348)	(0.528)	(0.405)	(0.265)	(0.473)
Observations	910	674	877	910	674	877
R-squared	0.187	0.098	0.155	0.379	0.314	0.258

Robust standard errors in parentheses

Note that we controlled for position in the asset distribution $\label{eq:controlled} % \[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial x} = \frac{\partial f}{\partial$

^{***} p<0.01, ** p<0.05, * p<0.1

Consumption

Pooled OLS Estimations of closed form solution for consumption

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	singles F	singles M	couples	singles F	singles M	couples
Pr(SAFL>4) women	0.865**		0.222	0.599*	(-0.0378
log(age woman)	0.181*		-0.751***	0.0557		-0.794***
Low education dummy women	(0.0983) -0.0827		(0.290) 0.0229	(0.0795) 0.00449		(0.258) 0.0587
High education dummy women	(0.0552) 0.188***		(0.0605) 0.122**	(0.0492) 0.0674		(0.0529) 0.117**
Pr(SAFL>4) men	(0.0720)	0.433	(0.0583) 0.905***	(0.0604)	0.256	(0.0527) 0.751***
log(age man)		(0.311)	0.367		(0.247) -0.0488	(0.200) 0.443*
Low education dummy men		(0.0742) -0.135**	(0.297) 0.0702		(0.0550) -0.0759*	(0.264) 0.0926*
High education dummy men		(0.0593) 0.0480	(0.0571) 0.219***		(0.0437) -0.0449	(0.0521) 0.159***
Constant	5.812***	(0.0606) 6.498***	(0.0540) 7.893***	6.571***	(0.0455) 7.230***	(0.0487) 8.098***
	(0.498)	(0.348)	(0.528)	(0.405)	(0.265)	(0.473)
Observations	910	674	877	910	674	877
R-squared	0.187	0.098	0.155	0.379	0.314	0.258

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Note that we controlled for position in the asset distribution

So far

- Created a financial literacy index by combining objective and subjective measures of financial literacy
- Confirmed findings of previous literature:
 - higher financial literacy ~ higher probability to invest in stocks and bonds
- Empirically tested the theoretical prediction that household consumption is positively related with financial literacy

So far

 First results suggest that financial literacy is positively related with household consumption, notably for single women and men that are part of a couple

References

- Bucher-Koenen, T., Alessie, R., Lusardi, A. & van Rooi, M. (2014). Women, confidence, and financial literacy. MIMEO working paper.
- Deuflhard, F., Georgarakos, D. & Inderst, R. (2015). Financial literacy and savings account returns. Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2666981
- Jappelli, T. & Padula, M. (2013). Consumption growth, the interest rate, and financial literacy.
 Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2244086
- Krijnen, J., Breugelmans, S., & Zeelenberg, M. (2014). Waarom mensen de pensioenvoorbereiding uitstellen en wat daar tegen te doen is. *NEA Paper*, (52).
- Lusardi, A. & Mitchell, O. S. (2011). Financial literacy around the world: an overview. *Journal of Pension Economics and Finance*, 10(04), 497–508.
- Remund, D. L. (2010). Financial literacy explicated: The case for a clearer definition in an increasingly complex economy. *Journal of Consumer Affairs*, 44(2), 276–295.
- Van Rooij, M., Lusardi, A. & Alessie, R. (2011a). Financial literacy and stock market participation. *Journal of Financial Economics*, *101*(2), 449–472.

Thank you

Interest compounding

Suppose you have 100 euros on a savings account and the interest is 2% per year. How much do you think you will have on the savings account after five years, assuming that you leave all your money on this savings account: more than 102 euros, exactly 102 euros, less than 102 euros?

- 1 more than 102 euros
- 2 exactly 102 euros
- 3 less than 102 euros
- 4 I don't know
- 5 I would rather not say

Inflation

Suppose that the interest on your savings account is 1% per year and that inflation amounts to 2% per year. After 1 year, would you be able to buy more, exactly the same, or less than you could today with the money on that account?

- 1 more than today
- 2 exactly the same as today
- 3 less than today
- 4 I don't know
- 5 I would rather not say

Understanding risk

A share in a company usually offers a more certain return than an investment fund that only invests in shares.

- 1 true
- 2 not true
- 3 I don't know
- 4 I would rather not say

Bonds and interest rates

If the interest rate goes up, what should happen to bond prices?

- 1 they should increase
- 2 they should decrease
- 3 they should stay the same
- 4 none of the above
- 5 I don't know
- 6 I would rather not say

Closed-form solution for consumption

$$c_{t} = \frac{(1+r)}{\sum_{\tau=t}^{L} \left(\frac{1}{1+\rho}\right)^{\tau-t}} A_{t-1} + y \frac{\sum_{\tau=t}^{L} \left(\frac{1}{1+r}\right)^{\tau-t}}{\sum_{\tau=t}^{L} \left(\frac{1}{1+\rho}\right)^{\tau-t}}$$

• setting $\rho = 0$:

$$c_{t} = \frac{(1+r)}{L-t+1} A_{t-1} + \frac{y}{L-t+1} \sum_{\tau=t}^{L} \left(\frac{1}{1+r}\right)^{\tau-t}$$

Derivative wrt r

$$\frac{dc_t}{dr} = \frac{1}{L - t + 1} A_{t-1} - \frac{y(1 + r - (1 + r)^{t-L})}{r^2(L - t + 1)}$$

$$+\frac{y(1-(t-L)(1+r)^{t-L-1})}{r(L-t+1)}$$

Simulation is based on...

$$c_t = \frac{(1+r)}{L-t+1} A_{t-1} + \frac{y}{L-t+1} \frac{1+r-(1+r)^{t-L}}{r}$$

Effect of change in r on consumption

Figure 2: Effect of change in interest rate r on consumption for two periods

Euler equation with logarithmic preferences

$$u'(c_t) = \left(\frac{1 + r(\varphi)}{1 + \rho}\right)^{\tau - t} u'(c_\tau)$$

 And for two subsequent periods using logarithmic preferences:

$$\Delta \log(c_t) = \log\left(\frac{1+r}{1+\rho}\right)$$