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ABSTRACT

The work proposes a backtesting analysis in comparison between the Lee-Carter
and the Cairns-Blake-Dowd mortality models, employing Italian data. The mortal-
ity data come from the Italian National Statistics Institute (ISTAT) database and
span the period 1975-2014, over which we computed back-projections evaluating
the performances of the models in comparisons with real data. We propose three
different backtest approaches, evaluating the goodness of short-run forecast versus
long-run ones. We find that both models were not able to capture the improving
shock on the mortality observed for the male population on the analyzed period.
Moreover, the results suggest that CBD forecast are reliable prevalently for ages
above 75, and that LC forecast are basically more accurate for this data.

1 Introduction

Dowd et al. [2010a] recently performed a backtesting analysis on seven different stochas-
tic mortality models with results providing that the models performed adequately by
most backtests. The analysis was applied to English & Welsh male mortality data. We
decided to perform a backtesting investigation using Italian mortality data. The deci-
sion was motivated by the study of the historical mortality trend, observed on the forty
past years horizon for both the male and female populations. The gap between gen-
ders deeply decreased over the considered horizon with steep improvements in male
mortality. So the first attempt of this paper is to scrutinize the forecast proposed by the
models for both sexes, which have experienced different mortality evolutions. More-
over, in the last three decades mortality projections have been widely used by Italian
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policy makers for taking decisions on public pension reforms. The study of the mortal-
ity risk - intended as a the uncertainty in future mortality rates - as well as longevity risk
for the long-term trend in mortality rates [Cairns et al., 2006] played a central role for
both public and private annuity providers. Among all the principal stochastic mortality
models1, we chose to compare the Lee-Carter (LC) and the Cairns-Blake-Dowd (CBD)
ones.

On the one hand, the Lee-Carter model has signed a deep methodological revolution
in the field of demographic forecast, particularly in mortality. The mortality model
has been used together with a similar fertility model and deterministic migration as-
sumptions to generate stochastic forecast of the population and its components. These
stochastic population forecast, in turn, have been used as the key component of stochas-
tic projections of the finances of the U.S. Social Security system. The stochastic forecast
avoid some of the problems inherent to the use of the classic scenario method for the
representation of forecast uncertainty [Lee, 2000]. Moreover, the LC model has stimu-
lated a long series of applications involving different countries and institutions: sta-
tistical, research and government offices. The great credit of the LC model was to
give access to mortality projection not only to demographers but also to many other
researchers of different fields. Then in occurrence with the main demographic applica-
tions, the LC model suggested:

• an important research front on the problematics related to the parameter estima-
tions [Booth et al., 2006], with many applications also in the actuarial and eco-
nomics literature [Loisel and Serant, 2007];

• extension of the forecasting analysis with disaggregated projection on demographic
subsets trying to maintain consistency at the aggregate level [Lee and Miller,
2001], [Li and Lee, 2005] and [Li, 2010].

On the other hand, the Cairns-Blake-Dowd model even if more recent in its for-
mulation with respect to the LC model, has played an important role in forecasting
mortality at higher ages (i.e. from ages starting at 60 and over). The mortality model
gave great contributions for pension funds, life-insurance companies and private an-
nuity providers in general. It is mainly used for pricing longevity bonds as suggested
also by the authors in the first formulation of the model Cairns et al. [2006]. For these
reasons, we chose LC and CBD models among others, since they also represent two of
the principal parametric family of mortality models; one considering the logarithms of
the central rate of mortality as dependent variable, and the other the logit transforma-
tion of the mortality odds.

The second attempt of this work is to analyze the long-term forecast with respect to
the short-term, observing potential differences in the parameter estimations [Mavros

1Refer to Cairns et al. [2009] for detailed list and quantitative comparison of the principal stochastic
mortality models.

2



et al., 2014]2 accordingly with changes in the starting point of the database. Chan et al.
[2014] have also studied the new-data-invariant property on the quality of the CBD
mortality index. For this purpose, we introduced a new backtesting approach named
hereafter jumping fixed-length horizon that makes short-run projections of five years,
"jumping forward" the historical database by five-year-steps.

Considerations on the backtesting results suggested by the models do not imply a con-
clusive evaluation of the models, since we perform the analysis considering exclusively
the range of ages 57 ≤ x ≤ 90. The choice for the interval of ages was motivated by
the fact that in Italy, Ragioneria dello Stato compute the so called transformation coef-
ficients for pension annuities, starting from age 57. Moreover, since the CBD model is
recommended as a good predictor of mortality at higher ages, we chose such interval
of ages in order to make a more prudent and accurate comparison between the models.
Furthermore, we decided to take in consideration only death probabilities qx,t among
all the others possible biometric functions.

We used death probabilities qx,t provided by the Italian National Statistics Institute
(ISTAT) spanning the period 1975-2014. Then, over the designed horizon of histori-
cal data, we select the "lookback" and the "lookforward" windows3 respectively for the
parameter estimation and forecast. In particular, the length of the estimation and fore-
cast window will be different for each of the three backtesting approaches proposed by
the work:

• Fixed horizon backtests: lookback and lookforward windows of 20 years;

• Jumping fixed-length horizon backtests: lookback window of 20 years and lookfor-
ward window of 5 years (short-term projections);

• Rolling fixed-length horizon backtests: lookback window of fixed-length (20 years)
and a contracting lookforward window from 20 to 2 years of projections.

The paper is organized as follows. Section 2 briefly presents the models and the adopted
terminology, Section 3 shows the historical Italian mortality data, Section 4 and subsec-
tions explain methodology and the backtesting results obtained by the different ap-
proaches. Section 5 concludes.

2 Model Specifications

2.1 The Lee-Carter Model

We took into consideration the original formulation of Lee and Carter [1992], repre-
sented by the following model equation:

mx(t) = eαx+βxkt+εx,t (1)

2In particular for the case of Cairns-Blake-Dowd model.
3For the sake of simplicity, we decided to adopt the same terminology used by Dowd et al. [2010a]
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where mx(t) is the central rate of mortality at age x and at time t, and it is given by the
formula:

mx(t) =
dx(t)

Lx(t)

with dx(t) representing the number of deaths occurred between x and x + 1, and Lx(t)
called the age units lived in x that is simply the mean number of individuals alive be-
tween x and x + 1.

For simplicity, the model was implemented by adopting its logarithm transformation:

ln mx(t) = αx + βxkt + εx,t

with the following parameter interpretations:

• kt is the time index representing the level of mortality at time t;

• αx representing the average trend of mortality on the time horizon at age x;

• βx representing a measure of the sensitivity in movement from the parameter kt.
In particular, βx describes the relative speed of mortality changes, at each age,
when kt changes.

• εx,t is the homoskedastic error term, that incorporates the historical trends not
considered by the model. It is assumed to be εx,t ∼ N (0, σ2

ε ).

The Appendix A illustrates the method adopted for the estimation and projection
of the parameters.

2.2 The Cairns-Blake-Dowd Model

We considered the original formulation of the model provided by Cairns et al. [2006]
with the following model equation:

ln

[

qx,t

px,t

]

= k
(1)
t + k

(2)
t (x − x̄) + εx,t (2)

where

• k
(1)
t and k

(2)
t are two stochastic processes and represent the two time indexes of

the model;

• qx,t and px,t represent respectively the death and the survival probability, at time
t for an individual aged x;

• ln

[

qx,t

px,t

]

= ln (φx) = logit qx,t is the logit transformation of qx,t, with φx represent-

ing the mortality odds;
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• x̄ is the mean age of the considered interval of ages;

• εx,t is the error term that encloses the historical trend that the model does not
express. All the error terms are i.i.d following the Normal distribution with mean
0 and variance σ2

ε .

The model is full identified, so it does not require additional constraints.

Moreover, the time index k
(1)
t is the intercept of the model, it affects every age in the

same way and it represents the level of mortality at time t. More precisely, if it declines
over time, it means that the mortality rate have been decreasing over time at all ages.

The time index k
(2)
t represents the slope of the model: every age is differently affected

by this parameter. For instance, if during the fitting period, the mortality improvements

have been greater at lower ages than at higher ages, the slope period term k
(2)
t would be

increasing over time. In such a case, the plot of the logit of death probabilities against
age would become more steep as it shifts downwards over time [Pitacco et al., 2009].
The Appendix B illustrates the estimation and projection methods involved.

3 Case Study: Italian Mortality Data from 1975 to 2014.

The application of the presented models requires the use of the death probabilities time
series for extrapolating mortality forecast. As already mentioned, we use data provided
by ISTAT, also because these data are commonly used by private insurance companies
and public pension providers. The range of ages is 57 ≤ x ≤ 90. In particular, we chose
the upper limit for taking into consideration the ISTAT graduation method of ending
the life table [Istat, 2001]. The calculation of the probabilities of dying for ages over 95
is performed by extrapolating the qx,t graduated values following the Thatcher et al.
[1998] model4:

qx,t =
ϑeγx

1 + ϑeγx
(3)

This kind of graduation could have affect the backtesting results, comparing real-
ized data with forecast obtained applying the LC (1) and the CBD (2) models, since
they offer a different mortality pattern at old ages. Moreover, we selected the time pe-
riod from 1975 to 2014, because from the mid-seventies in Italy successfully began the
fight against cardiovascular diseases, and more recently against tumors that are still
the main cause of death. These successes have contributed to an extraordinary accel-
eration of growth in life expectancy, especially at higher ages: e.g. from 1975 to 2014,
life expectancy at 60 years has seen an average increase of about four hours each day,
both for men and women. In the male case, this phenomena extraordinarily occurred.
Previously, life expectancy at birth had registered a first significant increase due to the

4In the equation (3) ϑ and γ are parameters that need to be estimated. In general, those parameters are
estimated applying OLS on the logit transformation of equation (3).
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control of infant and child mortality, while from the years under review it has also ben-
efited from the control of adult age mortality.

Table 1: Proportion of persons aged 30 and expected to be alive at selected ages

Italian Period Life Tables
Ages 1975 1980 1985 1990 1995 2000 2005 2010 2014

Male
50 0.9438 0.9483 0.9554 0.9583 0.9591 0.9662 0.9722 0.9755 0.9777
60 0.8406 0.8487 0.8646 0.8839 0.8951 0.90962 0.9242 0.9324 0.9376
70 0.6292 0.6409 0.6691 0.7081 0.7351 0.7732 0.8060 0.8257 0.8385
80 0.3014 0.3161 0.3539 0.4029 0.4406 0.4936 0.5434 0.5912 0.6188
90 0.0464 0.0527 0.0682 0.0954 0.1170 0.1396 0.1648 0.1996 0.2250
95 0.0080 0.0096 0.0140 0.0235 0.0318 0.0401 0.0491 0.0595 0.0743

Female
50 0.9703 0.9739 0.9769 0.9785 0.9796 0.9822 0.9850 0.9865 0.9871
60 0.9194 0.9290 0.9364 0.9427 0.9473 0.9525 0.9585 0.9620 0.9639
70 0.8009 0.8168 0.8337 0.8546 0.8681 0.8828 0.8972 0.9053 0.9087
80 0.5070 0.5403 0.5814 0.6249 0.6576 0.69561 0.7322 0.7540 0.7674
90 0.1154 0.1433 0.1629 0.2141 0.2547 0.2860 0.3297 0.3653 0.3878
95 0.0226 0.0326 0.0380 0.0626 0.0830 0.1030 0.1259 0.1420 0.1654

Currently, the probability of reaching a high age for a young adult is really high: for
a 30 years old, the probability of reaching the age of 60 is almost 94% for male and 96.4%
for women. However, it remains difficult to reach the threshold of 90 years, especially
for men. Table (1) accurately shows5 how this probability changed starting from age 50.
Moreover, it shows how the difference in probability between genders became greater
as the age increased.
This process is known as the rectangularization and shift forward of the survival curves,
its measure can be derived from the entropy of a life table (4). It was introduced by
Keyfitz and Caswell [2005] and it is referred to in this paper as tHK,α with α the age by
which the survival curve is built, and t the year of the period life table at which the
entropy is computed (in our case t = 1975, 1976, ... 2014). Then,

tHK,α = −∑j(ln lj)lj

∑j lj
(4)

where lj is the probability of surviving form age6 α (α = 0, 1, ..., w ; lα=1) to age j
(j = α + 1, α + 2, . . . w). The entropy index becomes smaller whenever the survivorship
curve lj moves towards a rectangular form; in this limit case tHK,α = 0.

5Even though the backtesting analysis will be focused on the interval of ages 57-90, however here we
decided to provide information also on ages lower than x = 57. In this way, we are able to present the
more accurate Italian demographic scenario for the period observed.

6The starting point for the final age interval is denoted by w.
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Figure (1) shows how the trend of the rectangularization process has change accord-
ingly to ages (i.e. from α = 50 to α = 65, 75). As regards women, this process was
already in place before 1975. In particular, starting from ages 50 and 65 it is continued
with a substantially linear continuity. In the case of men instead, the rectangularization
process begins to escalate smoothly after 1984. However, the following trend stresses
a deep reduction of mortality, from which is derived an attenuation of the inequality
between sexes even though it is not disappeared. From Figure (1), tHk,α shows that the
mortality improvement in the elderly population has taken place at different rates over
time, particularly with a faster steep decline for both sexes after 1993.

Figure 1: Italian life tables 1975-2014: males and female entropy (tHK,α)

The differentiation of the pace in reducing mortality of both sexes - starting from
adult age up to those old - is confirmed by the results of so-called Kullback and Leibler
[1951] divergence:

tDKL,α(hz, gz) =
w−α

∑
z=0

hz ln

(

hz

gz

)

(5)

where hz and gz are the probability distributions of the “time until death" random
variable Zα for a person aged α respectively for males and females. Equation (5) mea-
sures the "difference" between these two probability distributions, which in our case is
taken as the reference model gz. The choice is motived not only by the fact that mortal-
ity is significantly lower for women than men, but also because the continuous decline
of female mortality in the reporting period occurred much more regularly [Maccheroni,
2014]. The divergence in mortality between genders mortality has different character-
istics depending on the considered age group indeed.

Figure (2) shows that the divergence in mortality between sexes presents different char-
acteristics, depending on the observed age. In particular, until 1981 the divergence
gradually increased on the full range of ages. At a later time, differentials in mortality
between sexes decrease whenever x is lower that 60, while it progressively increase at
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higher ages. These diverging trends make interesting the application of the models, es-
pecially for the comparison of results. Needless to say that, the mortality forecast will
be more accurate for women than men. This is due to the fact that, women experienced
a death risk reduction process with greater regularity than men.

Figure 2: Kullback-Leibler divergence with respect to Zα at selected ages

4 Backtesting Analysis

In this section we introduce the three different backtesting frameworks studied, and we
present the related forecast results.

• The fixed horizon backtest uses a fixed twenty-years historical "lookback" interval
1975 ≤ t ≤ 1994 , and a fixed "lookforward" horizon 1995 ≤ t ≤ 2014 (20 years);

• The jumping fixed-length horizon backtests make short run projections of five years,
and keep fixed the length of the "lookback" horizon (20 years), but making jumps
of 5-years-ahead so to cover the "lookforward" interval 1995 ≤ t ≤ 2014.
This analysis is divided in four groups of estimations and forecast, described by
the Table (2) below:

Table 2: Jumping Fixed-Length Horizon Backtests Data Horizon

Lookback Horizon Lookforward Horizon

1975-1994 1995-1999
1980-1999 2000-2004
1985-2004 2005-2009
1990-2009 2010-2014

• Finally, the rolling fixed-length horizon backtests keep fixed the length of the "look-
back" horizon (i.e. 20 years) and lets roll it ahead year-by-year. The projection
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are made over the remaining horizon keeping fixed the last year of projection at
t = 2014.This analysis is divided in nineteen groups of estimations and forecast,
described by the Table (3) below:

Table 3: Rolling Fixed-Length Horizon Backtests Data Horizon

Lookback Lookforward Lookback Lookforward

1975-1994 1995-2014 (20) 1985-2004 2005-2014 (10)
1976-1995 1996-2014 (19) 1986-2005 2006-2014 (9)
1977-1996 1997-2014 (18) 1987-2006 2007-2014 (8)
1978-1997 1998-2014 (17) 1988-2007 2008-2014 (7)
1979-1998 1999-2014 (16) 1989-2008 2009-2014 (6)
1980-1999 2000-2014 (15) 1990-2009 2010-2014 (5)
1981-2000 2001-2014 (14) 1991-2010 2011-2014 (4)
1982-2001 2002-2014 (13) 1992-2011 2012-2014 (3)
1983-2002 2003-2014 (12) 1993-2012 2013-2014 (2)
1984-2003 2004-2014 (11)

The numbers in parenthesis show the length of the "lookforward" horizon. More-
over, they indicate also the position of the year 2014 over the related projection interval.
This will be particularly useful for the analysis of results that will be presented on the
related section (4.3).

4.1 Fixed Horizon Backtest (1995-2014)

We begin the backtesting analysis taking into account a forecast horizon that is demo-
graphically considered as to be a medium term projection horizon. The comparisons
proposed hereafter are among the most likely values of qP

x,t prediction - that is, the cen-
tral value of the 95% confidence interval derived from the model - and those observed
qO

x,t; comparisons between the central value and extremes of the confidence interval oc-
curs only for the ages 65 and 85. These are the ages that in the demographic literature
mark the entrance in the range of so-called "young-old" and "oldest-old". Unfortu-
nately, due to space limitation it was not possible to present the comparison to the age
75, that divides the old from the "young-old" [Vaupel, 2010].
The qO

x,t can present a strong temporal variability due to the so-called "time effect", that
is the time condition that affects mortality from a variety of factors. Among these, the
best known is the climatic effect that for instance can cause a rise in mortality at old ages
during a very hot summer (e.g. episode occurred in Italy on 2003); or also epidemiolog-
ical effects that currently arise from flu on winter in low-mortality countries. Needless
to say that, the impact of those factors is stronger on the most vulnerable people. For
this reason, a rise in mortality due to those factors is generally followed by a decrease in
mortality, since those remained alive have a lower frailty level. These mortality shocks
can affect short-term forecasts rather than long-term ones, since the latter are usually
more capable to capture changes in environmental conditions, socio-economic and peo-
ple’s living styles.
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From an applicative point of view, particularly focused on the insurance and social
security sector, we were interested in analyzing the performance of the models on as-
sessing the risk of death at various ages. It is from this point of view that we are going
to develop our analysis. For this purpose, we make a briefly assessment of forecast
errors, which was performed using as an index the sum of the squared errors (SSE),
defined as it follows:

SSE = ∑
x

∑
t

(qO
x,t − qP

x,t)
2

where qO
x,t and qP

x,t are respectively the death probabilities observed and forecast (pro-
jected). Table (4) shows SSE for the first and the second becktesting approach that will
be presented in the following section.

Table (4) shows how the LC model proposes more accurate forecast with respect to
the CBD model for the period 1995-20014 in the female case; it is more difficult to judge
the models’ performances for the male case. As far as men are concerned, LC model
initially over-estimates qO

x,t from ages 57 to 70 (approximately), with persistence across
years. In particular, the over-estimation errors become greater as the projection is re-
ferred to the last year of the forecast horizon. Figure (3) multi-dimensionally shows
the ratio between the projected and the real death probabilities. The described LC per-
formance trend is also graphically reported by the figure (4), comparing projections at
ages 65 and 85 to the observed data. The over-estimation starts decreasing from age 80,
point at which the divergence between qO

x,t and qP
x,t is really close to zero. However, for

high ages at the extreme of the interval, LC forecast systematically under-estimate qO
x,t

Figure 3: Lee-Carter Fixed Horizon Backtest:
qP

x

qO
x

ratio.

As to women, the divergence between qO
x,t and qP

x,t is sharply smaller than for men.
In particular, this is evident on figure (3) where we can see that forecast initially under-
estimates real data converging at the age 65, then starts overestimating for a wide span
of ages. Furthermore, the last part of the age range is again characterized by an un-
derestimation path. However, also the over-estimation experienced at higher ages is
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smaller than the one observed in the male case. The results obtained with the CBD
model are similar to the LC results particularly for the male case. For this reason, it is
difficult to privilege the performances of one model with respect to the other over the
forecast horizon 1995-2014, also because we have few useful elements to balance the
differences in the "goodness of fit" provided by each model.

Figure 4: LC Fixed Horizon Backtest forecast: comparison between observed death
rates and the corresponding 95% confidence interval of the forecast based on the time
series 1975-1994

The CBD forecast greatly over-estimates the male mortality historical evolution,
particularly for the central and the last years of projection. The error is evident on
the full range of ages, however it comes to be smaller at the age 80 after which forecast
start under-estimating qO

x,t with an increasing magnitude until the last age and the last
projection year (i.e. x = 90 and t = 2014). This is to be seen in figure (5) below.
When we look at the female case, the accuracy of the CBD forecast is worst. In this case,
in fact, we can notice a wide and systematic under-estimation on approximately all the
first half of the age range for almost the totality of the forecast horizon. In particular, the
forecast error reduces around the age 68, then it starts over-estimating until x = 85 after
which it under-estimates again. However, at x = 85 the forecast is relatively accurate
with values of qO

x,t all inside the confidence interval [Figure (6)].
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Figure 5: Cairns-Blake-Dowd Fixed Horizon Backtest:
qP

x

qO
x

ratio.

In conclusion, both models make similar forecast errors. On the one hand, regard-
ing males the error is represented by an initial over-estimation that smoothly converge
to the real data and then starts under-estimating, though the divergences experienced
with the CBD model are characterized by a smaller variability with respect to the LC
model. On the other hand, the female case shows an initial under-estimation con-
verging to the real data, and then a fluctuation of over-estimation and final under-
estimation. In general, the LC model provides a better fit over a wide range of ages,
showing lower variability in both over and under-estimation.

Figure 6: CBD Fixed Horizon Backtest forecast: comparison between observed death
rates and the corresponding 95% confidence interval of the forecast based on the time
series 1975-1994
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Anyway, the choice between the models comes to be difficult at particular ages. Fig-
ure (7) shows the high and the low confidence intervals for both the models considered.
Even though LC curves are nested into the CBD lines with greater differences shown
by the male case, however both models’ confidence intervals include the observed data,
providing theoretical robustness to the projections.

Figure 7: Fixed Horizon Backtest forecast: comparison between CBD and LC confidence
intervals at age 85.

Table 4: Sum of Squared Errors (SSE) between observed qO
x and forecast qP

x .

Fixed Horizon Backtest

CBD model LC model
Prediction Years Male Female Male Female
1995-2014 0.02653 0.01088 0.02403 0.00507

Jumping Fixed-Length Horizon Backtests

CBD model LC model
Prediction Years Male Female Male Female
1995-1999 0.00174 0.00068 0.00249 0.00073
2000-2004 0.00370 0.00283 0.00473 0.00228
2005-2009 0.00234 0.00225 0.00346 0.00151
2010-2014 0.00105 0.00088 0.00149 0.00080

4.2 Jumping Fixed-Length Horizon Backtests

From the results shown in table (4), it is clear that the two models best capture the trend
of female mortality. More in detail, the accuracy of the prediction about the next five
years, using the periods 1975-1994 and 1990-2009 as database, is far higher than the
other two sub-groups of forecast. On the contrary, both models do not show the under-
estimating and over-estimating path of the qO

x,t at various ages, which was peculiar in
characterizing the result in the previous backtesting case. Only the results of the CBD
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model show a similar pattern as already seen, although in this case with overestimates
and underestimates staggered by age differently from period to period. This point will
be discussed in detail hereafter.
Even though the analyzed models should be assessed on a long-term prediction, how-
ever in this case it is particularly noticeable how a change in the starting point of the
time series, makes the models to differently incorporate the changes in mortality oc-
curred in the past twenty years. This is generally accomplished through the parame-
ter estimates, which are also reflected throughout the extrapolation process associated
with the model. However, an estimation procedure cannot guarantee a priori a constant
performance of the forecast. This is also due to the fact that, the dynamic of mortality
varies in accordance with a multiplicity of social factors that affect the life of every per-
son. Unfortunately, mathematical models are not able to capture such factors.

Now we analyze the immediate effects of these estimates, starting with the LC
model (1). The parameters αx and βx are time independent age-specific constants, so
their estimations will depend on the historical period used as database, and do not need
to be predicted. The kt index captures the time-series common risk factor in that same
period, showing the main mortality trend for all ages at time t. Forecast are produced
extrapolating the time index kt, and the mortality projection at each age are all linked
together by the product βxkt (1).
In this backtesting framework, the shift forward of the database shows a continuous
decline in mortality provided by the estimates of the parameter αx and kt. Moreover,
the estimations for the parameter βx - referred to the male case - show greater values
at the beginning of the age range (57 ≤ x ≤ 90) than at the end. This result describes
a greater decrease in mortality for those ages with respect to the others, at which βx

presents smaller estimated values [Figure (8), male].

Figure 8: LC Jumping Fixed-Length-Horizon: bx parameter estimates

This scenario is in line ex ante with the historical experience. However, the forecast
referred to the period 2000-2004 show a systematic over-estimation of the qO

x,t for both
men and women until the age x = 80 [Figure (9), LC model]. Taking into consideration
the female case, the estimates of the parameter βx are more susceptible to changes in
the starting point of the time series. This is evident on Figure (8) for the female case.
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Needless to say that, the female βx trend improved the accuracy of the forecast for the
periods 1995-1999 and 2010-2014 [Figure (9), LC model].

In the case of CBD model (2), the presence of two time-varying parameters k
(1)
t and

k
(2)
t should increase - at least a priori - the forecasting performance with respect to the

LC model. This result is evident for the male forecast on the short-run [Table (4)]. As

already mentioned, in the CBD model the k
(1)
t mortality index represents the level of

the mortality curve, after the logit transformation. A reduction in k
(1)
t entails a parallel

downward shift of the logit-transformed mortality curve, which represents an overall
mortality improvement. In particular, this is what occurred in the practice, with greater

effects for the female case that are enhanced by the smoothly divergences of k
(1)
t trends

between sexes. This is clear on the left hand side of Figure (10) below.

Figure 9: LC and CBD
qP

x

qO
x

ratio: comparison between models.

Note: The curves represent the average of the
qP

x

qO
x

ratio over the five-years forecast horizon.

In this case, the jumps of 5-year-ahead do not seem to affect the k
(1)
t trend. This is

also evidenced by the substantial continuity of the overall reduction in mortality. This

is not the case as far as the the k
(2)
t mortality index is concerned. Its path drafts the

slope of the logit-transformed mortality curve. An increase in k
(2)
t entails an increase in

the steepness of the logit-transformed mortality curve, which means that mortality at
younger ages - i.e. those below the mean age x̄ (here x̄ = 73.5) - improves more rapidly
than at older ages. This is clear on the right hand side of the Figure (10) below. Referring

to the male case, we find that the speeding of increase in k
(2)
t is greater for the periods

1985-2004 and 1990-2009 than for the other two. For this reason, the projected qP
x,t show

stronger improvements in mortality for the periods 2005-2009 and 2010-2014 than for
the others, particularly for the ages lower that x = 69. More in depth, results show an
underestimation of the qO

x,t for the ages lower that x = 69, and a smooth overestimation

path for those higher. Despite the fact that, the growth of k
(2)
t between 1980 and 1999 is

higher than that of 1975-1994 and that the reduction of k
(1)
t is greater, we find that qP

x,t

15



sharply overestimates qO
x,t on the period 1995-1999 and particularly on 2000-2004 for the

full range of ages.

Figure 10: CBD Jumping Fixed-Length-Horizon: parameter estimates

As regards to women, k
(2)
t presents similar records to men, whereas for the period

1990-2009 the growth rate of k
(1)
t is slightly attenuated. In contrast with the male sce-

nario, in this caseqP
x,t systematically and significantly underestimates qO

x,t from the age
x = 57, converging gradually to the observed data as x moves towards x̄. Moreover,
underestimations become larger as the "lookback" horizon slides forward for 5 years in
5 years. For the ages higher that x̄, the overestimation is usually small as large was the
previous underestimation in terms of ages [Figure (9), CBD model].

Figure 11: LC and CBD
qP

x

qO
x

ratio: comparison between models on the same gender.

Note: The curves represent the average of the
qP

x

qO
x

ratio over the five-years forecast horizon.

Hence, comparatively, we conclude that a good result for the performance index
SSE [Table (4)] can hide some compensation for the forecast error in terms of age and
time. Figure (11) above graphically shows the described scenario.
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4.3 Rolling Fixed-Length Horizon Backtests

Finally, the analysis concludes with the study of the forecast convergence to the ob-
served qO

x,t in the year7 2014. For this reason, we build a framework of nineteen groups
of estimations and projection, rolling the database (fixed-length of 20 years) sequen-
tially forward from8 1975 to 1993. Then, we compare the 2014 forecast obtained in
each group with the realized mortality for that year. We observe that the comparison
enhance the same critical issues analyzed in the previous paragraphs, with particular
emphasis for two main aspects.
Firstly, scrolling the database over time year by year, gives rise to strong fluctuations
in the performance of the prediction measured by the ratio of qP

x,t and qO
x,t. These oscil-

lations [Figures (12) and (13) ] are evident for both sexes in the results of both the LC
and the CBD models. Moreover, the trend is interrupted by a deep break in correspon-
dence of the 1985-2004 database. In particular, the previous base (1984-2003) provided
a strong overestimation of qO

x,t especially at old ages, the base 1985-2004 data has then

reduced the size, the next one (1986-2005) moved closer to qO
x,t.

Figure 12: LC Rolling Fixed-Length Horizon Backtests:
qP

x

qO
x

ratio 2014.

It is objectively difficult to give an explanation for these results. However, they can
be partially justified recalling that the year 2003 was characterized by a sharp rise in
mortality, especially at old ages. Therefore, this historical event may have affected the
estimated parameters. However, in the male case both models systematically underes-
timate qO

x,t when the age is lower than x = 73, and overestimate when is higher. This
result is particularly evident when the "lookback" horizon is 1985-2004, and also for
the following cases. In particular, CBD underestimates already when the database is
referred to the period 1981-2000. However when for the period 1985-2004, the diver-
gence becomes greater when compared to the LC model [Figures (12) and (13)]. As it is
shown in this case, the choice of the database play a crucial role in forecasting mortality.

7The choice for the year 2014 was motivated by the observed regular mortality path. The 2015 mortality
trend is expected to be increased, particularly at old ages [Istat, 2016].

8These represent the initial years of the 20-years-length database; i.e. 1975 refers to the estimation
period 1975-1994, and so on so forth.
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Figure (12) shows the ratio between the projected and the observed death probabilities
for the year 2014. Referring to the Table (3), the graph shows the projections obtained
for that year on each pair of "Lookback" and "Lookforward" horizon.

Figure 13: CBD Rolling Fixed-Length Horizon Backtests:
qP

x

qO
x

ratio 2014.

In particular, the-sub case index of the graph shows the position of that year on the
projection horizon (i.e. 20 means that the year 2014 were the 20th year of projection, 19
means the 19th, and so on so forth.). Since the dataset is rolling over time decreasing
the projection horizon, we decided to show the position of the year 2014 in order to take
into account both the specific sub-case and the related length of the forecast horizon.
Figure (13) shows the same for the CBD model with an inverted order sub-cases for
males so to better show the shape of each curve.

Secondly, we detected substantial differences between the performances of the two
models by analyzing female mortality. Figure (13) evidences how CBD model system-
atically underestimates real mortality until the age of 75 and then starts converging to
qO

x,t after that "threshold" age. This result, which was already evident in the previous
paragraphs, is likely to be linked to the combined effects on the CBD model (2) of the
role of the mean age x̄ (in our case x̄ = 73.5) of the age group, for which the forecast
is made, and of the observed female mortality pattern. This results are also confirmed
from the analysis of the confidence interval referred to the forecast. Figure (14) shows
that in the female case at age 65 (t = 2014), qO

x,t is always outside the confidence interval,
while at age 85 it is inside with central values almost converged to the real data in each
sub-case. In the case of LC model, the initial underestimation of the qO

x,t is much less
pronounced with respect to the previous case. Moreover, the "threshold" age with re-
spect to which the forecast before underestimates and then overestimates qO

x,t, increases
as the database moves forward [Figure (12)].
Figure (14) shows the convergence of the projections to the obeserved data for the year
2014, at ages 65 and 85. The x-axis shows the position of the year on the forecast horizon
as before. Figure (15) presents the same for the Lee-Carter model.
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Figure 14: CBD Rolling Fixed-Length Horizon Backtests: convergence to real data
(2014)

Figure 15: LC Rolling Fixed-Length Horizon Backtests: convergence to real data (2014)
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5 Conclusions

The main focuses of this paper are to scrutinize the forecast for both sexes proposed by
the models, and to analyze the long-term forecast with respect to short-term, observing
qualitative differences in the estimation of the parameter accordingly to changes in the
starting point of the database.
As regards to the former, we find that basically both models were not able to capture
the shock - in terms of improvements - on the male mortality trend, with greater biases
for the ages lower than x = 75, which were those more affected by the improvement.
In this sense, CBD forecast for those ages are more biased than LC projections in terms
of over-estimations. The limited capacity of the models in predicting male mortality
is evident in all the three backtesting frameworks, table (4) numerically summarizes
the difference - in terms of performances - between sexes for the first two backtesting
approaches. Also the analysis of the forecast for the year 2014 that we provided with
the third approach, confirms this result. Moreover, women’s forecast are widely more
accurate than men with small biases observed both in the short and in the long-term.
However, in the female case CBD projections showed particularly deep and systematic
under-estimations with respect to the ages lower than 75.
From the comparison between the short-term and the long-term forecast, we find that
changes in the starting point of the database widely affect the estimation of the LC pa-
rameters, particularly for βx with observable impacts on the projections. The female
forecast are more influenced by those changes in βx. The CBD model satisfy the "new-

data-invariant" property for the estimation of the parameter k
(1)
t , while k

(2)
t presents

persistent changes for the same year as the dataset slides forward. This aspect is more

evident on males than on females. In particular, the adjustment of the parameter k
(2)
t

(i.e. x − x̄) affects mortality forecast with weights of opposite sign at the extremes of
the considered age range. The weight is greater as large is the age range. This struc-

tural characteristic of the model - albeit simultaneously with k
(1)
t - results in a system-

atic under-estimation of the qO
x,t for the ages lower that x̄ that gradually decreases as x

moves towards x̄. Moreover, mortality forecast around x̄ are almost explained exclu-

sively by k
(1)
t , since (x − x̄) is really close to 0 in that case. On contrary, as x gets closer

to the upper limit of the age range, the weight of (x − x̄) on mortality forecast changes
with opposite sign with resulting over-estimation of the qO

x,t. For these reasons, the risk
in terms of application of the models is conspicuous, because it could potentially affect
both the mortality risk and the longevity risk. Taking in consideration the variability

of both the parameters βx (LC) and of k
(2)
t (CBD), it is difficult to judge a priori what of

this two rigidities penalizes more the mortality forecast.

As far as CBD model is concerned, we find that projections are not reliable for de-
scribing mortality at ages before x = 75. For this reason, LC projections are preferable
for describing Italian mortality in this particular framework of years and ages.
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Finally, we would like to make clear that we examined the models in their original
form, so we can not rule out the possibility that some extensions of the models might
resolve the evidenced issues. Moreover, we should precise that we analyzed the per-
formance of the models on this particular dataset, so we make clear that the work has
no presumption of generality in judging the models.
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6 Appendix A
Lee-Carter Estimation and Projection

Parameter Estimations

The parameter estimation was computed with respect to the Ordinary Least Square (OLS)
estimation method in accordance to the original approach suggested by the authors.

The following constraints were used in order to find a unique solution for the parame-
ters:

xm

∑
x=x1

βx = 1 and
tn

∑
t=t1

kt = 0 (6)

In order to obtain the estimation for the variable α̂x, it was necessary to compute the
partial derivative of the equation LS(α, β, k) = ∑x ∑t(ln[mx(t)] − αx − βxkt)2 , with
respect to αx. Then, as first order condition we get:

α̂x =
1

tn − t1 + 1 ∑
t

ln mx(t) (7)

where the denominator simply represents the number of years considered in the dataset,
and x = x1, ..., xm is the considered range of ages.

As it is expressed by the equation (7), the estimation for the first parameter αx was given
by the average of the logarithms of the central rate of mortality over time t. Further-
more, the estimations of β̂x and k̂t for the parameters βx and kt were obtained by adopt-
ing the Singular Value Decomposition of the matrix A of elements (ln[mxi

(tj)] − αxi
),

with i as age index and j as time index (years considered in the data).
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At this point, the estimated parameters were recalibrated so that the differences be-
tween the actual and the estimated total deaths in each year were zero. This imply that
the recalibrated k̂∗t solve the equation9:

∑
x

dx,t = ∑
x

e(α̂
∗
x+β̂∗

x k̂∗t )Lx,t (8)

Finally, the estimated parameters were adjusted so to satisfy the constraint at (6) for
the parameter k̂∗t . Then:

a∗x = α̂x + β̂x k̄ (9)

β∗
x = β̂x

(

xm−x1+1

∑
j=1

β̂1j

)

(10)

k∗t = (k̂∗t − k̄)

(

xm−x1+1

∑
j=1

β̂1j

)

(11)

where k̄ = 1
tn−t1+1 ∑

tn
t=1 k̂∗t is the arithmetic average of k̂∗t with respect to time t, and

(

∑
xm−x1+1
j=1 β̂1j

)

is simply the sum of all the estimated β̂, which sum to 1. The fitted

model is then used to estimate the median and the 95% prediction interval.

Parameter Projection

We projected the estimated parameters k∗t of Lee-Carter model using a Random Walk
with Drift equation:

kt = kt−1 + d + εt with εx,t ∼ N (0, 1)aandaE(εs, εt) = 0 (12)

where the drift d is estimated by the formula:

d̂ =
(k∗2 − k∗1) + (k∗3 − k∗2) + ... + (k∗T − k∗T−1)

tn − t1
=

(k∗T − k∗1)
tn − t1

with k∗T and k∗1 respectively given by the first and the last elements of the vector k∗t =
[k∗1, ..., k∗T]. The drift is simply the arithmetic mean of the differenced series of estimated
parameters.

After having solved the equation (12) of the RWD model, we project the parameter
kt at time T + ∆t as it follows:

k̂T+∆t = k∗T + (∆t)d̂ +
√

∆tεt

At this point, it was possible to get the equation for the projection of the central rates
of mortality as it follows:

9The equation (8) has no explicit solution so it has to be solved numerically.
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m̂x,T+∆t = ea∗x+b∗x k̂T+∆t

Finally, we transformed the central mortality rates into probabilities by adopting the
Reed and Merrell [1939] method. The relation is expressed by the equation:

nqx(t) = 1 − e−n
(

mx(t)
)

−n30.008
(

mx(t)
)2

7 Appendix B
Cairns-Blake-Dowd Estimation and Projection

According to the original formulation of the model proposed by Cairns et al. [2006] the
equation (2) is the result of the logit transformation of the following model equation:

qx,t =
ek

(1)
t +k

(2)
t (x−x̄)

1 + ek
(1)
t +k

(2)
t (x−x̄)

. (13)

Fitted values for the stochastic processes k
(1)
t and k

(2)
t were obtained using least squares

applied to (13). The fitted model is then used to estimate the median and the 95% pre-
diction interval.

The parameters vector~kt =
[

k
(1)
t , k

(2)
t

]′
has been projected by considering the following

equation of a two-dimensional random walk with drift:

~kt+1 =~kt + µ + CN(t + 1) (14)

where:

• µ is a constant 2 x 1 vector of drifts, computed as the arithmetic mean of the
differenced series of estimated parameters;

• C is a constant 2 x 2 upper triangular matrix, derived by the unique Cholesky de-
composition of the variance-covariance matrix V = CC′ of the parameters vector
~kt+1;

• N(t + 1) is a two-dimensional standard normal random variable.

The adopted forecast method treat the estimated parameters as if they were the true
parameter values (parameters certainty). In particular, the presented projections were
computed considering parameter certainty based on 5,000 simulation trials.
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