Skewness Expectations and Portfolio Choice

Matthias Wibral, Maastricht University and IZA

joint with Tilman Drerup, Stanford University

Workshop "Household Finance and Retirement Savings" October 19, 2017

How do skewness expectations affect portfolio choice?

- Many models of investor behavior propose a preference for skewness
 - Investors like positively skewed, lottery-like return distributions
 - Different channels (Brunnermeier et al., 2007; Mitton & Vorkink, 2007; Barberis & Huang, 2008)
 - Lottery choice experiments in the laboratory (Ebert & Wiesen, 2011)

• In the field distribution of future returns is unknown, investors form expectations

Problem: Direct test of models requires knowing expected skewness

We directly measure expected skewness and relate it to portfolio choice.

- Previous literature: indirect approach
 - Proxy for expected skewness
 - Investors extrapolate from past returns (Kumar, 2009; Barberis et al. 2016)
 - Maximum return over certain period in the past (Bali et al., 2011; Lin & Liu, 2017)
 - Future returns, option market data (Mitton & Vorkink, 2007; Conrad et al., 2013)
 - Show that proxy is negatively related to future returns
 - > What is a good proxy? Over which period should we calculate it?

- This paper: direct approach
 - Measure expected skewness at the individual level
 - Relate it to portfolio choice (cross-section and over time)

We extend the literature on stock market expecations.

- Higher order risk attitudes and financial decisions (Noussair et al., 2013)
 Do not focus on expectations
- Literature on stock market expectations (Vissing-Jorgensen, 2003; Dominitz & Manski, 2004; Kézdi & Willis, 2011; Hurd et al., 2011; Hudomiet et al., 2011; Amromin & Sharpe, 2014; Ameriks et al., 2015; Drerup et al., 2016; Huck et al., 2017)
 - Expectations well calibrated?
 - Related to heterogeneity to socio-demographics?
 - Expectations related to stock holdings?
 - All focus on point predictions or mean-variance, no evidence on expected skewness

- 1. Motivation
- 2. Design
- 3. Results
- 4. Conclusions

- Representative panel of the Dutch population (LISS)
- Series of incentivized experiments embedded into monthly surveys
 - Beliefs about return distribution for two risky assets
 - Construct portfolio out of these assets and a risk-free asset.
- Rich set of background variables
- Exclude households with financial wealth < 1000 €

Aug 2013

Beliefs for Aug '14: AEX, Philips

 $\operatorname{Controls}$

- Intuitive method (Delavande & Rohwedder, 2008)
- Avoids monotonicity violations common in probabilistic questions
- Use Bellemare et al. (2012) to estimate moments of belief distribution

Beliefs for Aug '14: AEX, Philips Beliefs for Aug '14: Return of savings account

Portf. construction: 100 € in AEX, Philips, savings account

Controls

Controls

- 1. Motivation
- 2. Design
- 3. Results
- 4. Conclusions

Skewness expecations are very heterogeneous, and not well calibrated to historical levels.

• Similar heterogeneity and miscalibration for mean and standard deviation (in line with previous work).

M. Wibral, "Skewness Expectations and Portfolio Choice"

- Is expected skewness related to sociodemographics?
 - Might explain why certain groups are more likely to gamble on the stock market. (Kumar, 2009)

We do not find any significant and consistent correlations between sociodemographics and expected skewness.

Expected skewness is correlated with portfolio choice.

	Portfolio Share						
	AEX						
	(1)	(2)					
Constant	26.61***	28.67***					
	(3.33)	(3.42)	 Increase in expected skewness for 				
μ_{aex}	0.68***	0.86***	AEX by 1 st.d. increases share				
	(0.11)	(0.11)	invested into AEX by 1.3%.				
$\sigma_{\rm aex}$	0.04	0.27					
	(0.19)	(0.22)	• 1/5 of the offect for comparable				
$\gamma_{ m aex}$	1.07^{*}	1.20^{**}	increase in expected mean				
	(0.30)	(0.30)	increase in expected mean				
$\mu_{ m philips}$		-0.24					
		-0.19					
^o philips		(0.14)	 Including expected skewness leads 				
$\gamma_{\rm nhiling}$		0.17	to moderate increase in Adj. R ²				
(philips		(0.33)					
Exp. return for savings account		-0.16					
		(0.10)					
Controls	Х	Χ					
Observations	$1,\!857$	$1,\!857$					
Adj. \mathbb{R}^2 (%)	10.3	11.5					

Change in expectations is correlated with changes in portfolio choice for the stock.

	Change in Portfolio Share						
	A	EX	Philips				
	(1)	(2)	(3)	(4)			
Constant	4.78***	4.29***	-1.63	-1.79			
	(1.52)	(1.43)	(1.45)	(1.44)			
$\Delta \mu_{\rm aex}$	0.46**	0.58***		0.26*			
	(0.23)	(0.24)		(0.16)			
$\Delta \sigma_{\rm aex}$	-0.48*	-0.18		-0.43			
	(0.27)	(0.31)		(0.29)			
$\Delta \gamma_{\rm aex}$	-0.38	0.06		0.37			
	(0.72)	(0.74)		(0.74)			
$\Delta \mu_{\rm philips}$		-0.38***	0.31**	0.26^{*}			
		(0.10)	(0.14)	(0.14)			
$\Delta \sigma_{\rm philips}$		0.03	0.25	0.39			
		(0.18)	(0.22)	(0.24)			
$\Delta \gamma_{\rm philips}$		-1.03***	1.06^{***}	0.99^{***}			
		(0.37)	(0.36)	(0.36)			
Controls	Х	Х	Х	Х			
Observations	$1,\!857$	$1,\!857$	$1,\!857$	$1,\!857$			
Adj. \mathbb{R}^2 (%)	1.9	4.7	3.9	4.3			

- Changes in expected skewness only correlated with changes in portfolio share of Phillips
- Possibly due to lack of temporal variation for expected skewness in AEX 20

- 1. Motivation
- 2. Design
- 3. Results
- 4. Conclusions

• Skewness expectations are very heterogenous and not related to sociodemographics.

• Suggestive evidence that respondents prefer skewed return distributions.

Thank you for your attention!

m.wibral@maastrichtuniversity.nl