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Abstract 

 

 

We calculate optimal portfolio choices for a long-horizon, risk-averse European investor who 

diversifies among stocks, bonds, real estate, and cash, when excess asset returns are 

predictable. Simulations are performed for scenarios involving different risk aversion levels, 

horizons, and statistical models capturing predictability in risk premia. Importantly, under one 

of the scenarios, the investor takes into account the parameter uncertainty implied by the use 

of estimated coefficients to characterize predictability. We find that real estate ought to play a 

significant role in optimal portfolio choices, with weights between 10 and 30% in most cases. 

Under plausible assumptions, the welfare costs of either ignoring predictability or restricting 

portfolio choices to financial assets only are found to be in the order of at least 100 basis 

points per year. These results are robust to changes in the benchmarks and in the statistical 

framework.  
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Investing for the long-run in European real estate.  
Does predictability matter? 

 
 

Executive Summary 

 

Qual è il peso da attribuire ai mercati immobiliare, azionario ed obbligazionario in un 

portafoglio ben diversificato? Nel presente studio rispondiamo a questo interrogativo facendo 

riferimento a dati mensili europei (1993 - 2003). Inoltre analizziamo come si modificano i pesi di 

portafoglio al mutare della lunghezza dell’ orizzonte temporale di investimento, da un mese a dieci 

anni. A tal fine, consideriamo esplicitamente la prevedibilità dei rendimenti delle diverse asset 

class, visto che ricerche esistenti dimostrano che essa condiziona significativamente la struttura e la 

dinamica ottimale dei pesi di portafoglio. La nostra analisi è potenzialmente rilevante per investitori 

che non limitano le loro scelte alle attività finanziarie tradizionali, e che non investono 

esclusivamente nell’area nord americana. Infatti la maggior parte degli studi di portafoglio 

considera un menú di attività finanziarie comprensivo di sole azioni, obbligazioni a lungo termine 

ed attività a breve, benché molti investitori istituzionali detengano una quota rilevante del 

patrimonio in immobili. Inoltre sono ancora relativamente poche le analisi di portafoglio per il 

lungo periodo, sebbene molti gestori di portafoglio istituzionali abbiano almeno una parte del 

portafoglio investita a lungo termine.  

Le attività immobiliari risultano avere un ruolo rilevante nella diversificazione del 

portafoglio, con quote per lo più comprese tra il 10% ed il 30% a seconda del grado di avversione al 

rischio e della considerazione dell’incertezza sui parametri. Il costo di rinunciare all’asset class 

immobiliare è valutabile in 100 punti base all’anno per un investitore mediamente avverso al rischio 

con un orizzonte decennale.  

La prevedibilità dei premi per il rischio ha effetti di primo ordine sull’allocazione del 

portafoglio. In particolare, la quota investita nell’azionario aumenta sensibilmente con l’orizzonte 

temporale mentre quella obbligazionaria diminuisce. Utilizzando un modello lineare vettoriale 

autoregressivo (V.A.R.) per catturare le variazioni nelle opportunità di investimento troviamo infatti 

che i premi al rischio azionari e quelli immobiliari prevedono i successivi premi al rischio 

immobiliari e obbligazionari. Inoltre, vi è correlazione inversa tra le innovazioni ai rendimenti 

immobiliari ed azionari e le innovazioni nei dividendi. Tali innovazioni possono essere interpretate 

come delle notizie non anticipate che portano gli eccessi di rendimento a differire da quelli previsti 

in media dal modello V.A.R.. Entrambi gli effetti rendono i comparti immobiliare e, soprattutto, 

azionario meno rischiosi al crescere dell’orizzonte temporale,  in quanto le notizie concernenti 

azioni ed immobili tendono a presentarsi contemporaneamente a sorprese di segno opposto per i 

dividendi pagati dalle società quotate. Questi risultati si ridimensionano se si tiene conto, con 

metodi bayesiani, del estimation risk, cioè dell’incertezza delle previsioni conseguente a quella sui 

parametri del V.A.R.  Infatti la riduzione del rischio a lungo termine dovuta alla prevedibilità dei 

rendimenti, che causa una domanda di azioni e di fondi immobiliari crescente con l’orizzonte 

temporale, viene controbilanciata dall’incertezza circa la stima dei parametri, con il risultato di 

ottenere una domanda  piuttosto insensibili all’orizzonte di investimento. Resta invece decrescente 

il peso delle obbligazioni nel portafoglio.  

Va sottolineato che nello studio è stato  utilizzato, come indicatore del mercato immobiliare, 

l’indice EPRA 40 Liquid. Dunque si è considerato un investitore che non ha acquisito direttamente 

immobili e non ne sopporta -di conseguenza- la limitata liquidità. Estensioni al caso di investimento 

diretto sono possibili, ancorché limitate dalla scarsa disponibilità di serie di dati sufficientemente 

lunghe sui rendimenti diretti del mercato immobiliare europeo.  



1. Introduction

Predictability of asset returns is known to have powerful effects on the structure and dynamics of optimal

portfolio weights for long-horizon investors. This conclusion holds across alternative models for predictabil-

ity, different data sets and asset allocation frameworks, see e.g. Brennan, Schwartz, and Lagnado (1997)

and Campbell and Viceira (1999, 2001). However, most of this evidence has been obtained in asset menus

limited to traditional financial portfolios only, i.e. stocks, bonds, and short-term liquid assets.1

Our paper provides further evidence on the effects of predictability on long-run portfolio choice when

the asset menu includes one additional asset type in long-horizon asset allocation problems: real estate.

Furthermore, our asset allocation results are based on predictability patterns characterizing a European

data set that has been left unexplored thus far. Clearly, both extensions are crucial to make the results

found in the literature relevant to the operational goals of long-horizon asset managers (like pension funds

and insurance companies) that commonly employ asset menus not limited to financial securities only, and

that fail to limit their portfolio choices to North American assets only. Obviously, among them European

institutional investors occupy a leading position.

From an empirical viewpoint, contributions available to pension funds are invested not only in equity

and bonds, but in real estate property too (see Hudson-Wilson, Fabozzi, and Gordon (2003)). For instance,

as of the mid 1990s, in the UK 75 and 7.8 per cent were held in stocks and real estate respectively, while

the corresponding percentage weights were 6.6 and 4.2 in Germany, and 26.9 and 2.2 in France. In the last

two countries, long-term bonds represented 42.3 and 59.0 percent of long term portfolios (see Miles, 1996,

p.23), while bonds were given a negligible weight in the UK. So it appears that considerable heterogeneity

exists in the relative weights assigned to stocks, bonds and real estate. Although our paper is normative,

tracing out the implications of predictability for optimal portfolio composition, we report results that make

it clear under what conditions (e.g. concerning preferences, investment horizons and predictability models)

one may obtain rational choices consistent with either the German-French pattern (dominated by bonds)

or with the British one (dominated by stocks). Additionally − since the evidence is for real estate weights
between 2 and 8 percent − we will understand whether existing data support the notion that real estate
ought to be included in long-horizon portfolios, although with rather moderate weights.

We use a simple vector autoregressive framework to capture predictable time variations in the invest-

ment opportunity set, similarly to Campbell, Chan, and Viceira (2003), Lynch (2001), and others. We

solve a standard portfolio problem with isoelastic utility of terminal wealth and find that results on the

importance of predictability for optimal portfolio weights are mixed. On one hand, similarly to Campbell

and Viceira (2002) and Guidolin and Timmermann (2004), predictable time variation in risk premia has

first-order effects for the optimal allocation between equities and bonds that are robust to taking parameter

uncertainty into account, see Barberis (2000). On the other hand, predictability in risk premia produces

only second-order effects for the optimal diversification between financial securities vs. real estate assets,

in the sense that results do not depart significantly from the weights obtained under the (false) assumption

of independently and identically distributed returns over time. In most cases, the optimal long-run weight

to be assigned to real estate is between 10 and 30 percent of the initial wealth.

However, the overall picture is consistent with the general finding that long-run investors with an

interest in European assets ought to carefully consider the effects of time-varying risk premia in their

1Flavin and Yamashita (2002) represent an exception, although their focus is on life-cycle effects at the household level.



portfolio choices. Our estimates of optimal portfolio weights are structurally different when predictability

is omitted, even when parameter uncertainty is taken into account. In fact, the estimated welfare costs

from ignoring predictability are large, in the order of 100 basis points per year for a long-run (10-year)

investor with a plausible coefficient of relative risk aversion of 5. Additionally, we compute the costs of

restricting the available asset menu to financial securities only, thus ignoring real estate. We find that for

long-horizon investors the resulting damage would be substantial, once more in the approximate order of

100 basis points per year for a long-run, intermediate risk-averse investor. Such figure may however climb

up to more than 200 basis points under some configurations of the predictability model and assuming a

coefficient of relative risk aversion of 10. Therefore we report evidence that the utility gains from investing

in real estate are of first-order magnitude, although the associated portfolio weights may be moderate and

only weakly affected by time-variations in conditional risk premia.

Our paper contributes to three distinct literatures. Several studies have compared the risk and return

characteristics of stocks, bonds, and cash to real estate and analyzed optimal portfolio choice in a mean

variance framework, (see e.g. Li and Wang (1995), Ross and Zisler (1991)) considering the services of

housing to households as well (Pellizzon and Weber (2003)). However, there is still considerable uncertainty

on the optimal weight one should assign to real estate. Among the others, Hudson-Wilson, Fabozzi, and

Gordon (2003), Karlberg, Liu, and Greig (1996), Liang, Myer, and Webb (1996), and Ziobrowski, Caines,

and Ziobrowski (1999) calculate optimal mean-variance US optimal portfolios when real estate belongs to

the asset menu and is measured by direct (appraisal-based) indices. They find that in the US, real estate

ought to have a rather negligible weight, although its importance increases when bootstrap methods are

employed to account for the uncertainty surrounding the actual distribution of returns. On the opposite,

Chandrashakaran (1999) and Liang and Webb (1996) find much larger weights using longer time series

and/or different data (e.g. hedged REITS). However, none of these papers examine the predictability

patterns of returns affecting the risk premia and variance of cumulative returns and hence their desirability

in a multi-period setting. On the other hand, it is well known that while the investor’s planning horizon is

irrelevant for asset allocation when returns are independently and identically distributed (Samuelson, 1969;

Merton, 1969), when returns are predictable the mean-variance asset allocation may differ substantially

from the long-term one (see Bodie, 1995, Siegel, 1998 and Campell and Viceira, 2002, among others).

Therefore, by taking predictability into account, our paper departs from the earlier literature on portfolio

management when real estate is available. Moreover, at least to our knowledge, our paper is the first

attempt at taking parameter uncertainty into account in a framework that includes real estate and by

using an explicit, Bayesian framework of choice under estimation risk.

Another literature has shown that stock returns predictability may affect long-term portfolio choice

in two ways (e.g. Campbell, Chan, and Viceira, 2003). First, an investor would have powerful incentives

to regularly rebalance his portfolio as he receives new information on the conditional risk premium of

the available assets. Interestingly, Balduzzi and Lynch (1999) have shown that the expected utility gains

derived from exploiting conditional information are robust to the inclusion of transaction costs incurred at

the rebalancing points. Secondly (and assuming preferences different from log-utility), even a buy and hold

investor would modify his asset holdings in order to hedge future adverse predictable changes in investment

opportunities. When the asset menu is restricted to financial assets and a vector autoregressive (VAR)

system captures return predictability in the US, Campbell and Viceira (1999, 2002) and Barberis (2000)
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have shown that mean-reversion in stock returns implies that average stock holdings generally increase in

the investors’ horizon for low risk aversion. Average nominal bond holdings typically increase in the degree

of risk aversion, as their lower Sharpe ratio is accompanied by lower volatility. We extend these results to

an asset menu that includes real estate and find that also real estate investment schedules are generally

upward sloping, although to a lesser extent than stock schedules. We also document the effects of dynamic

portfolio choices (rebalancing) and conclude that even in the presence of real estate, portfolio choices ought

to strongly react to information that predicts future asset returns.

Finally, there is a recent econometric literature that has modeled returns on European assets and pinned

down predictability patterns useful for portfolio choice. For instance, extensive work has concerned the

properties of UK stock and bond returns (see among the others Clare, Thomas and Wickens, 1994; Black

and Fraser, 1995; Pesaran and Timmermann, 2000), although the recent debate has mostly focused on

whether non-linear models (Flavin and Wickens, 2001; Guidolin and Timmermann, 2003) may be needed

to calculate optimal portfolio weights, see Guidolin and Timmermann (2005). However, to the best of

our knowledge our paper is the first one to adopt an explicit aggregate, European focus and to jointly

model the VAR structure present in financial and real estate returns. We find that in a simple linear, VAR

framework, there is evidence of forecastability of returns compatible with the traditional notion that risky

assets (i.e. real estate and stocks) are less risky in the long-run than they are over short periods of time.

Two related papers are Barberis (2000) and Bharati and Gupta (1992). Barberis investigates the

portfolio choice effects of (VAR) predictability when the latter is characterized through parametric models

that are subject to estimation uncertainty (see also Brandt, 1999). The uncertainty about parameters,

i.e. estimation risk, can be taken into account when solving long-run portfolio problems by adopting a

Bayesian approach and integrating over the posterior density of the parameters to obtain the (multivariate)

predictive density of future asset returns. We adopt the same approach here. However, our asset allocation

problem is more realistic and rich than Barberis’, including bonds and real estate besides stocks and cash.

Moreover, we use different (European) data and perform a number welfare calculations that illustrate the

importance of both accounting for predictability and of expanding the asset menu to include real estate.

Bharati and Gupta (1992) model predictability in US asset returns − including real estate, measured as
REITs returns − by using predictive regressions that employ typical variables such as the 1-month T-bill
rate, the term spread, the default spread, monthly dummies etc. (see Pesaran and Timmermann (1995)).

Long-horizon portfolio models are used to calculate optimal portfolio choices. They find that predictability

and real estate as an asset class are both important, in the sense that active strategies involving real estate

holdings outperform passive ones, even in presence of transaction costs. However their paper disregards

parameter uncertainty, and uses a predictability framework that maximizes predictive R-squares through

increases in the number of state variables that make it difficult to apply dynamic portfolio optimization

methods. No welfare costs from omitting real estate are calculated, making their criteria of evaluation

possibly inconsistent with the investors’ objectives.2

The plan of the paper is as follows. Section 2 describes the methodology of the paper, in terms of both

statistical modeling and solution methods for the asset allocation problem. Section 3 describes the data and

2These results are confirmed by a recent paper by de Roon, Eichholtz, and Koedijk (2002) who use US financial and

residential property data to show that in a mean-variance framework real estate offers significant diversification benefit and

(for most geographical areas) should enter with a weight of about 30% in optimal portfolios. However their paper ignored

both predictability and the associated estimation uncertainty.
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reports results on their statistical properties, revealing the existence of exploitable predictable patterns in

the dynamics of the investment opportunity set. Section 4 is the core section of the paper. We characterize

optimal portfolios including real estate, and compare them to the case without predictability and parameter

uncertainty. In Section 5, we calculate welfare costs to quantify the importance of predictability and of

expanding the asset menu to include real estate. Section 6 contains a few robustness checks involving both

the model and the choice of the benchmarks for welfare cost calculations. Section 7 concludes.

2. Long Run Asset Allocation when Returns Are Predictable

In this section we review the structure and solution methods for a portfolio choice problem over the long

run when returns are predictable and when the uncertainty about the extent of predictability is taken into

account. The methodology follows Kandel and Stambaugh (1996) and Barberis (2000) and so we only

briefly discuss the main issues and technical details.

Long run portfolio strategies may be calculated under two alternative assumptions: buy-and-hold vs.

optimal rebalancing. An investor who follows a buy-and-hold strategy chooses the optimal allocation at the

beginning of the planning horizon (t) and does not modify it until the end-point (t+T ) is reached. Clearly,

when T is large, this represents a strong commitment not to revise the portfolio weights despite the receipt

of news characterizing the investment opportunity set. Under a rebalancing strategy, the investor chooses

the asset allocation at the beginning of the planning horizon taking into account that it shall be optimal

to modify the portfolio weights at intermediate dates (rebalancing points), t + ϕ, t + 2ϕ, ..., t + T − ϕ.

In the following we separately describe the relevant methods distinguishing between buy-and-hold and

rebalancing. Another important dimension of the portfolio problem is whether the statistical uncertainty

surrounding the parameters is taken into account or not. In the former case, the approach is usually a

Bayesian one, in which conditional expectations are calculated employing the predictive density of future

asset returns. In the latter case, the approach is based on standard classical tools.

2.1. Buy-and-Hold Investor

Consider the time t problem of an investor who maximizes expected utility from terminal wealth over a

planning horizon of T months by choosing optimal portfolio weights (ωt), when preferences are described

by a power, isoelastic utility function:3

max
ωt

Et

"
W 1−γ

t+T

1− γ

#

γ > 1.

Wealth can be invested in three risky asset classes: stocks, bonds and real estate. The menu is completed by

a cash, riskless investment (3-month deposits). The continuously compounded monthly real return on the

free risk asset, rf , is assumed to be constant as in Barberis (2000) and Campbell and Viceira (1999). The

continuously compounded excess returns (i.e. rt ≡ lnPt − lnPt−1 where P denotes asset prices) between

month t−1 and t on stocks, bonds and real estate are denoted by rst , rbt , and rrt , respectively. The fraction
of wealth invested in stocks, in bonds, and in real estate are ωs

t , ω
b
t , and ω

r
t , respectively, so that ωt ≡ [ωs

t

3Since Samuelson (1969) and Merton (1969), it is well known that except for the case of logarithmic preferences (i.e. γ = 1),

predictability gives rise to a an intertemporal hedging demand. In this paper we limit our attention to the empirically most

plausible case of γ > 1.
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ωb
t ω

r
t ]
0. When initial wealth Wt is normalized to one, the investor’s terminal wealth is given by:

Wt+T = ωs
t exp(R

s
t,T ) + ωb

t exp(R
b
t,T ) + ωr

t exp(R
r
t,T ) + (1− ωs

t − ωb
t − ωr

t ) exp(r
fT ),

where Rs
t,T , R

b
t,T , and R

r
t,T denote the cumulative returns on the three portfolios between t and T :

Rs
t,T ≡

TX

k=1

(rst+k + rf ) Rb
t,T ≡

TX

k=1

(rbt+k + rf ) Rr
t,T ≡

TX

k=1

(rrt+k + rf ).

Call n the number of risky asset classes. Our baseline experiment concerns n = 3. Furthermore, we follow

the bulk of the literature imposing no-short sale constraints. Therefore the buy-and-hold problem may be

simply re-written as

max
ωt

Et




n
ωs
t exp(R

s
t,T ) + ωb

t exp(R
b
t,T ) + ωr

t exp(R
r
t,T ) + (1− ωs

t − ωb
t − ωr

t ) exp(r
fT )

o1−γ

1− γ


 (1)

s.t. 1 ≥ ωs
t ≥ 0 1 ≥ ωb

t ≥ 0 1 ≥ ωr
t ≥ 0.

Time-variation in the excess returns is modeled using a Gaussian VAR(1) framework:

zt = µ+ΦRzt−1 + ²t or (2)



rst
rbt
rrt
xt



=




µs

µb

µr

µx



+




φss 0 0 φsx

0 φbb 0 φbx

0 0 φrr φrx

0 0 0 φxx







rst−1
rbt−1
rrt−1
xt−1



+




�st
�bt
�rt
�xt




where ²t is i.i.d. N(0,Σ) and xt represents any economic variable able to forecast future asset returns.

Model (2) implies that

Et−1[zt] = µ+ΦRzt−1,

i.e. the conditional risk premia on the assets are time-varying and function of past excess asset returns as

well as lagged values of the predictor variable xt−1. In particular, as in Barberis (2000), the zero restrictions

appearing in the vector autoregressive matrix ΦR will normally imply that most of the predictability in

asset risk premia is explained by lagged values of xt, besides possible persistent components captured by

φss, φbb, and φrr.

Although for most North-American data sets the restrictions on ΦR are generally supported by formal

statistical tests, and papers like Campbell, Chen, and Viceira (2003) have shown that relaxing the restric-

tions does not radically affect optimal portfolio weights, in this paper we also deal with the unrestricted

version of (2) in which zt = µ+Φzt−1+ ²t, with Φ full matrix.
4 For future reference, we call θ the vector

collecting all the parameters entering (2), i.e. θ ≡ [µ0 vec(Φ)0 vech(Σ)0]0.
4We also experiment relaxing the first-order VAR constraint but find that for all exercises performed in this paper, a

first-order VAR provides the best trade-off between fit and parsimony, i.e. it minimizes standard information criteria (AIC

and BIC).
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Under models like (2), the (conditional) distribution of cumulative future returns (i.e. the first n

elements in zt,T ≡
PT

k=1 zt+k) is multivariate normal with mean and covariance matrix given by:

Et−1[zt,T ] = Tµ+ (T − 1)Φµ+ (T − 2)Φ2µ+ ...+ΦT−1µ+ (Φ+Φ2+...+ΦT )zt−1

V art−1[zt,T ] = Σ+ (I+Φ)Σ(I+Φ)0+(I+Φ+Φ2)Σ(I+Φ+Φ2)0+

...+(I+Φ+ ...+ΦT−1)Σ(I+Φ+ ...+ΦT−1)0, (3)

where I is the identity matrix of dimension n andΦk ≡Qk
i=1Φ. Since the parametric form of the predictive

distribution of zt,T is known, it is simple to approach the problem in (1), or equivalently

max
ωt

Z
W 1−γ

t+T

1− γ
φ (Et[zt,T ], V art[zt,T ]) · dzt,T (4)

(φ (Et[zt,T ], V art[zt,T ]) is a multivariate normal with mean Et[zt,T ] and covariance matrix V art[zt,T ]),

by simulation methods. Similarly to Kandel and Stambaugh (1996), Barberis (2000), and Guidolin and

Timmermann (2005), this means evaluating the integral in (4) by drawing a large number of times (N)

from φ (Et[zt,T ], V art[zt,T ]) and then maximizing the following functional:

max
ωt

1

N

NX

i=1

"
{ωs

t exp(R
s,i
t,T ) + ωb

t exp(R
b,i
t,T ) + ωr

t exp(R
r,i
t,T ) + (1− ωs

t − ωb
t − ωr

t ) exp(r
fT )}1−γ

1− γ

#

, (5)

where [Rs,i
t,T Rb,i

t,T Rr,i
t,T ]

0 represent the first three elements of zit,T along a sample path i = 1, ..., N. At this

stage, the portfolio weight non-negativity constraints are imposed by maximizing (5) using a simple two-

stage grid search algorithm that sets ωj
t to 0, 0.01, 0.02, ..., 0.99, 0.9999 for j = s, b, r.5 In the results

that follow, we employ N = 100, 000 Monte Carlo trials in order to minimize (essentially eradicate) any

residual random errors in optimal weights induced by simulations.

2.2. Parameter Uncertainty

Since the true values of the ‘parameters’ in θ are unknown, the uncertainty on the actual strength of

predictability induced by estimation risk may substantially affect portfolio rules, especially over the long

run. As in Barberis (2000), parameter uncertainty is incorporated in the model by using a Bayesian

framework that relies on the principle that portfolio choices ought to be based on the multivariate predictive

distribution of future asset returns. Such a predictive distribution is obtained by integrating the joint

distribution of θ and returns p(zt,T ,θ|Z̈t) with respect to the posterior distribution of θ, p(θ|Z̈t):

p(zt,T ) =

Z
p(zt,T ,θ|Z̈t)dθ =

Z
p(zt,T |Z̈t,θ)p(θ|Z̈t)dθ,

where Z̈t collects the time series of observed values for asset returns and the predictor, Z̈t ≡ {zi}ti=1. When
parameter uncertainty is taken into account, the maximization problem becomes:6

max
ωt

Z
W 1−γ

t+T

1− γ
p(zt,T |Z̈t,θ)p(θ|Z̈t) · dzt,T .

5As explained by Kandel and Stambaugh (1996), ωjt = 1 cannot be considered as when 100% of the wealth is invested in

some asset and Rj
t,T → −∞ (bankruptcy) is feasible (as it is the case under a multivariate normal distribution), ωjt = 1 would

lead to zero or negative wealth which for γ > 1 would deliver a (meaningless) maximizer for (5).
6As it is well known from the Bayesian econometrics literature (see e.g. Hamilton (1994) for an introduction), integrating

the joint posterior for zt,T and θ with respect to the posterior for θ delivers a density with fatter tails which simply reflect

the additional (estimation) uncertainty implied by θ being random.

6



In this case, Monte Carlo methods require drawing a large number of times from p(zt,T ) and then ‘extract-

ing’ cumulative returns from the resulting vector. However, the task is somewhat simplified by the fact

that predictive draws can be obtained by drawing from the posterior distribution of the parameters and

then, for each set of parameters drawn, by sampling one point from the distribution of returns conditional

on past data and the parameters. At this point, (2) can be re-written as:




z02

z03
...

z0t



=




1 z01

1 z02
...

...

1 z0t−1




"
µ0

Φ0

#

+




²02

²03
...

²0t



,

or simply Z = XC+E, where Z is a (t − 1, n + 1) matrix with the observed vectors as rows, X is a

(t − 1, n + 2) matrix of regressors, and E a (t − 1, n + 1) matrix of error terms, respectively. All the
coefficients are instead collected in the (n + 2, n + 1) matrix C. If we consider the following standard

uninformative diffuse prior:

p(C,Σ) ∝ |Σ|−n+2
2 ,

then the posterior distribution for the coefficients in θ, p(C,Σ−1|Z̈t) can be characterized as:

Σ−1|Z̈t ∼ Wishart(t− n− 2, Ŝ−1)
vec(C)|Σ−1, Z̈t ∼ N

³
vec(Ĉ),Σ⊗ (X0X)−1

´

where Ŝ = (Z−XĈ)0(Z−XĈ) and Ĉ = (X0X)−1X0Z, i.e. the classical OLS estimators for the coefficients
and covariance matrix of the residuals. Also for the Bayesian case, we adopt a simulation method that:

First, draws N independent variates from p(C,Σ−1|Z̈t). This is done by first sampling from a marginal

Wishart for Σ−1 and then (after calculating Σ) from the conditional N
³
vec(Ĉ),Σ⊗ (X0X)−1

´
, where Ĉ

is easily calculated. Second, for each set (C,Σ) obtained, the algorithm samples cumulated excess returns

from a multivariate normal with mean vector and covariance matrix given by (3). Given the double

simulation scheme, in this case N is set to a relatively large value of 300,000 independent trials.

2.3. Dynamic Rebalancing Strategies

The solution method is in this case based on standard dynamic programming principles and on a discretiza-

tion of the state space. In particular, divide the interval [t, T ] into B ≥ 1 intervals [t, t+ϕ], [t+ϕ, t+2ϕ],

..., [t+ (B− 1)ϕ, t+Bϕ], where B = T/ϕ and assume the rebalancing occurs at regular intervals B times

over [t, T ]. The problem is then similar to (1), with the only difference that the objective ought to be

maximized by choosing the entire sequence {ωt+ϕ}
B−1
ϕ=0 (subject to the same constraints as before):

max
{ωt+kϕ}

B−1
k=0

Et

"
W 1−γ

t+T

1− γ

#

s.t. Wt+(k+1)ϕ =Wt+kϕ[ω
s
t+kϕ exp(R

s
t+kϕ,t+(k+1)ϕ) + ωb

t+kϕ exp(R
b
t+kϕ,t+(k+1)ϕ)+

+ωr
t+kϕ exp(R

r
t+kϕ,t+(k+1)ϕ) + (1− ωs

t+kϕ − ωb
t+kϕ − ωr

t+kϕ) exp(r
fϕ)]

where cumulated returns Rj
t+kϕ,t+(k+1)ϕ ≡

Pϕ
i=1(r

j
t+i+rf ) (j = s, b, r) are defined similarly to Section 2.1.

Standard arguments (see e.g. Ingersoll (1987)) show that under a power utility function the value function
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of the problem is homogeneous in wealth, i.e.

V (Wt+kϕ, zt+kϕ) ≡ max
{ωt+kϕ}

B−1
k=0

Et+kϕ

"
W 1−γ

t+T

1− γ

#

=
W 1−γ

t+kϕ

1− γ
Q(zt+kϕ).

This fact suggests solving the problem by backward induction, starting at time t+ (B − 1)ϕ and working
to time t. The solution is approximate in the sense that it is based on a discretization of the space for the

state vector z on a discrete grid of J points, say zj, j = 1, ..., J. In fact, at time t+ (B − 1)ϕ the problem
simplifies as Q(zjt+(B−1)ϕ) = 1 ∀j, i.e. at the end of the investment horizon the investor ought to solve

max
ωt+(B−1)ϕ

Et+(B−1)ϕ

"
W 1−γ

t+T

1− γ

#

, (6)

which is a simple buy-and-hold problem with horizon ϕ. If the process of excess asset returns is de-

scribed by (2) and parameter uncertainty is ignored, then (6) has a simple solution that can be found

using the results in Section 2.1, as the multivariate density for z remains normal p(Et+(B−1)ϕ[zt+(B−1)ϕ,T ],

V art+(B−1)ϕ[zt+(B−1)ϕ,T ]) with moments given by (3) when zt+(B−1)ϕ = z
j
t+(B−1)ϕ, j = 1, ..., J.7 For in-

stance, providedN is large enough, an approximate solution will be found by maximizingN−1PN
i=1

¡
W i

t+T

¢1−γ
/

(1 − γ), where W i
t+T is found on the simulated path i. Define then Q(zjt+(B−1)ϕ) as maximized expected

utility ϕ periods before terminal time T when p(Et+(B−1)ϕ[zt,T ], V art+(B−1)ϕ[zt,T ]) is conditional on

zt+(B−1)ϕ = z
j
t+(B−1)ϕ. Then for j = 1, ..., J, ω̂j

t+(B−2)ϕ will be found by solving (by simulation, using

a multivariate normal conditional on zjt+(B−2)ϕ)

max
ωj
t+(B−2)ϕ

Et+(B−2)ϕ

"
W 1−γ

t+(B−1)ϕ
1− γ

Q(zjt+(B−1)ϕ)

#

,

thus yielding J new values, Q(zj
t+(B−2)ϕ) j = 1, ..., J. The process is to be continued until t+(B−B)ϕ = t,

i.e. until a vector ω̂j
t j = 1, ..., J emerges from expected utility maximization. By construction, each ω̂j

t

is matched to a zjt . Although in general the observed zt differs from z
j
t on the grid, simple interpolation

algorithm will then be used to determine ω̂t using the two closest values of ω̂
j
t . For the calculations that

follow, we use J = 15 discretization points and a number of Monte Carlo trials N = 100, 000.

We also incorporate parameter uncertainty in a framework with dynamic rebalancing. In principle, this

is a formidable problem as an investor ought to rationally recognize that in the future − based on future
realizations of z − she will revise her posterior density for the coefficients in θ, and that such revisions

will influence her portfolio choices and hence the stochastic process for wealth. Essentially, parameter

uncertainty in a dynamic setting turns θ into an additional vector of state variables. However, similarly

to Gennotte (1986) and Barberis (2000), we simplify the problem in the following way: we suppose that

although the investor acknowledges that she is uncertain about model parameters, she ignores future

revisions of her posterior density for the parameters themselves. Once this simplifying assumption is

in place, the same dynamic programming, discretization-based approach followed in the classical case

can be implemented in the Bayesian framework, with the only difference that instead of approximating

expectations by simulation under a multivariate normal with moments described by (3), Monte Carlo

methods are applied drawing from an appropriate joint predictive density for cumulative returns over the

intervals [t, t+ ϕ], [t+ ϕ, t+ 2ϕ], ..., [t+ (B − 1)ϕ, t+Bϕ].

7This means that conditional moments have to be calculated by initializing zt+(B−1)ϕ to z
j
t+(B−1)ϕ on the grid, j = 1, ..., J .
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3. Estimation Results

3.1. The Data

Since one of the contributions of this paper is to expand the asset menu to real estate, we start by providing

a sense for what the related data issues may be. Real estate performance can be measured using two types

of indices. Direct indices are derived from either transaction prices or the appraised value of properties,

while indirect indices are inferred from the behavior of the stock price of property companies that are listed

on public exchanges. Indirect real estate index returns normally show higher volatility than direct returns,

and − being subject to similar common market factors − tend to display higher correlations with standard
stock index returns. In this sense, indirect indices are biased towards a finding of simultaneous correlation

of real estate returns with financial returns. On the other hand, the reliability of transaction-based, direct

indices is often made problematic by both the fact that properties may be wildly heterogeneous and by

the poor transparency of transaction conditions. Additionally, direct, appraisal-based data are known to

be affected by many biases (see Giliberto 1993). For instance, the standard deviation of appraisal indices

has been shown to represent a downward biased estimate of the true value.8

Confronted with these pros and cons of direct vs. indirect real estate indices, our paper employs

an indirect index of the 40 most liquid property companies in Europe, the monthly European Liquid 40

Index prepared by the European Public Real Estate Association (EPRALiquid40). EPRA indices track the

performance of stocks of real estate companies engaged in the ownership, disposure and development of

income-producing real estate. We select this index among the many indirect alternatives available (even in

the EPRA universe only) with the intent of maximizing the homogeneity of the asset classes under analysis

in terms of transaction costs − in the sense that only for the most liquid real estate property companies
an assumption of homogeneous frictions vs. stocks and bonds is a sensible one.

The remaining assets entering the investment opportunity set are European short-term deposits, long-

term bonds, and stocks. We use monthly data for the period March 1993 - March 2004, for a total of 132

observations. The sample period seems to be well balanced, including at least one complete bull (the 1990s)

and one complete bear (2000-2002) market cycle. Stock returns are calculated from the Datastream Euro-

pean price index; the Citigroup European World Government Bond Index is used to capture the behavior

of European bond returns for maturities exceeding five years; money-market, short-term instruments are

proxied by the JP Morgan Euro cash index obtained from daily compounding of the Euribor (the rate

on euro-currency deposits) with a three-month maturity. 9 All indices are continuously compounded (i.e.

lnP j
t − lnP j

t , j = s, b, r), total return market-capitalization indices, including both capital gains and in-

come return components, expressed in euros. Excess returns are calculated by deducting short-term cash

returns from total returns. We express returns in real terms, which seems appropriate given the long-run

horizons we are interested in. However, since our econometric models will concern excess returns, this is

8A comparison of direct appraisal-based vs. indirect indices is provided by Giliberto (1993) for the U.S. and by Maurer et

al. (2003) for Germany.
9In terms of coverage, the EPRALiquid40 index is based on prices of European quoted property company shares in the

following countries: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Norway,

Portugal, Spain, Sweden, Switzerland, and the United Kingdom. The WGBI Europe is a market-capitalization weighted

portfolio that tracks the performance of bonds issued in the countries above as well as Poland. The Datastream equity index

covers the stock markets in the countries above as well as Prague, Budapest, Bucarest, Moscow, and Instanbul.
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equivalent to deal with real short-term interest rates, calculated as a difference between nominal yields

and the monthly rate of change in a European harmonized index of consumer prices (EICP). Finally, the

predictor xt is identified with the dividend yield on the Datastream stock price index.10

In table 1 we present summary statistics for the variables discussed above. Over our sample period, the

European real estate market fails to be ‘dominated’ (in mean-variance terms) by the stock market, in spite

of the euphoria characterizing the so-called New Economy period of 1995-2000: real estate investments

performed similarly to equities in mean terms (around 6.5 percent per year in excess of the riskless real

rate), but were strictly less volatile than stocks (their annualized standard deviation is 13% vs. 17% for

equities).11 As one would expect, bonds have been less profitable (4%) but also less volatile (5.4%) than

stocks and real estate. However an annualized real return of approximately 7% remains remarkable for

bonds and is explained by the declining short-term interest rates during the 1990s. The third and fourth

central moments for excess returns stress that the series are moderately left skewed and leptokurtic. The

Jarque-Bera test for normality induces to strongly reject the null hypothesis of normality for excess stock

returns only, mainly on account of their negative skewness. Rejections of normality are weak for excess

bond and real short-term returns. Ljung-Box portmanteau tests are then applied to test the null hypothesis

of no serial correlations in levels and squares of returns. As it is well known, serial correlation tests applied

to squares are useful to detect volatility clustering, i.e. ARCH effects. European asset returns appear

to be approximately serially uncorrelated (there is weak evidence for the short-term real rate only) and

− with the exception of excess stock returns − also statistically independent, in the sense that volatility
clustering is weak.12 Finally, the dividend yield displays all the usual features that have appeared in the

North-American literature, namely it is a playkurtic and highly serially correlated series.13

These findings of rare departures from (univariate) normality and of weak serial correlation and volatility

clustering effects make it plausible to think that a simple, homoskedastic Gaussian VAR(1) model as in (2)

may be not be badly misspecified. Table 2 provides a first impression of the main features of a multivariate

Gaussian model, at least in terms of simultaneous correlations. The table shows that the performance across

the three markets is only weakly correlated, with a peak correlation coefficient of 0.56 between excess stock

and real estate returns.14 Under these conditions, there is wide scope for portfolio diversification across

financial and real assets. In particular, excess bond returns are characterized by insignificant correlations

10This is suggested by empirical findings on the predictability of stock returns reported for instance in Bekaert and Hodrick

(1992), Campbell and Shiller (1988), Fama and French (1989), Goetzmann and Jorion (1993) and Kandel and Stambaugh

(1996). Due to its high persistence coupled with the strong negative correlation between shocks to returns and shocks to

the dividend yield, Lynch (2001) and Campbell, Chan, and Viceira (2003) find that the dividend yield generates the largest

hedging demand among a wider set of predictor variables.
11Most of the earlier papers report lower mean returns for real estate appraisal-based returns coupled with lower volatility

relative to stocks in both in the US (Ibbotson and Siegel (1984); Maurer, Reiner and Sebastian (2003)) and the UK and

Germany (Maurer, Reiner and Sebastian (2003)). A similar pattern emerges in Maurer, Reiner and Rogalla (2003), using

German indirect real estate indices.
12The serial correlation for short real rates is stronger and fits the common perception of near-integration for short term

rates. The absence of volatility clustering at monthly frequencies is not surprizing. Among others, Campbell and Viceira

(1999), Barberis (2000), and Lynch (2001) all ignore ARCH effects and focus on the predictability of the risk premium only.
13The evidence of volatility clustering in table 1 for the dividend yield is illusory: once an AR(1) model is fitted to the

dividend yield, the residuals appear to be approximately homoskedastic.
14However this measure is likely to incorporate an upward bias as almost all the equities covered by the EPRA40 enter

in the Datastream European Stock Index. However, the latter covers 2,431 different stocks, so the effect on the correlation

coefficient is likely of second-order magnitude.
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vs. both stock and real estate, and therefore we should expect a large demand for bonds (see e.g. Campbell

and Viceira (2002)) for pure hedging reasons.

3.2. Predictability in Excess Asset Returns

Table 1 reveals only weak evidence of predictability in asset returns, essentially connected to the fact that

past excess stock returns forecast future, subsequent excess stock returns. However, a complete picture of

the degree to which risk premia may be forecast can be derived only from the estimation of (2). Results

are reported in table 3 for the case in which classical estimation methods are employed; robust t-stats are

reported in parenthesis, under the corresponding point estimates. There is strong statistical evidence that

lagged excess returns on real estate forecast subsequent excess bond returns, and that lagged excess stock

returns forecast excess real estate returns. In particular, an increase in time t real estate returns forecasts

a decline in bond returns at time t + 1, while a time t increase in stock returns predicts a time t + 1

increase in real estate returns.15 This is consistent with stories by which real estate markets adjusts to the

equity market swings (e.g., booming prices cause wealth effects that spread over the real estate market)

and in which real property forecasts future economic conditions (hence adjustments in the slope of the

term structure of interest rates), see e.g. Li, Mooradian and Yang (2003).

We also find weak evidence of the forecasting power of the dividend yield for European excess stock

returns: although the coefficient is interesting for its magnitude (it implies that a one standard deviation

increase in the dividend yield forecasts an increase in stock returns by 74 basis points), its statistical

significance is marginal (the corresponding p-value is 15% only). Therefore, while on US (and UK, see

Guidolin and Timmermann (2005)) data there is robust evidence that the dividend yield forecasts asset

returns, such evidence is more doubtful on European data, at least for our sample period. One last remark

concerns the MLE estimates of the (simultaneous) covariance matrix of excess asset returns residuals:

Σ̂ =




0.168 0.068 0.540 −0.951
0.001 0.052 0.228 −0.055
0.011 0.001 0.117 −0.574
−0.001 −0.000 −0.000 0.005



,

where the elements on and below the main diagonal are annualized volatilities and pairwise covariances,

respectively, while the elements above the main diagonal are pairwise correlations. In particular, notice

the relatively high correlation (0.54) between excess stock and real estate returns residuals, indication that

shocks unexplained by the VAR(1) model tend to appear simultaneously for the stock and real estate

markets. Moreover, the simultaneous sample correlations between news affecting stock and real estate

markets and news involving the dividend yields are negative and significant (−0.95 and−0.57, respectively):
when shocks hit the dividend yield, our estimates imply a contemporaneous negative effect on excess stock

and real estate returns. Such findings are ubiquitous in the literature analyzing US financial returns data

(see e.g. Barberis (2000)), but they are novel with reference to European and − more important − real

estate markets. As a result, the finding that the dividend yield is only a weak predictor of future excess

15The effects are economically important: a one standard deviation increase in monthly excess real estate returns forecasts

a 41 basis points decline in excess bond returns; a one standard deviation increase in monthly excess stock returns predicts

an 85 basis point increase in excess real estate returns.
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asset returns is only apparent, as we do find that news to the dividend yield have important and precisely

estimated correlation structure with financial return news. As we will see in Section 4, these features have

major portfolio choice implications.

In table 4, we repeat the econometric analysis employing Bayesian estimation techniques that − as

stressed in Section 2.2 − allow us to derive a joint posterior density for the ‘coefficients’ collected in θ.

The tails of this density also measure the amount of estimation risk present in the data. In fact, table

3 reports the means of the marginal posteriors of each of the coefficients in C along with the standard

deviation of the corresponding marginal posterior, which gives an idea of its spread and therefore of a

measure of the uncertainty involved. As typically found in the financial literature, the posterior means in

table 4 only marginally depart from the MLE point estimates in table 3.16 Standard errors are relatively

high, confirming the presence of important amounts of estimation risk in this application. However, it

remains clear that the effects of lagged excess stock returns on real estate returns and of lagged real estate

on bond returns are characterized by tight posteriors which suggest a non-zero effect. Also in this case,

the effect of the dividend yield on subsequent returns seems to be rather strong in terms of location of

the posterior density, although the tails are thick enough to cast some doubts on the precision with which

effects can be disentangled. For completeness, we also report the posterior means and standard deviations

(in parenthesis) for Σ:

ΣPost=




0.175
(0.063)

0.068 0.540 −0.951

0.001
(0.001)

0.054
(0.019)

0.228 −0.055

0.012
(0.002)

0.002
(0.001)

0.122
(0.044)

−0.574

−0.001
(0.000)

−0.000
(0.000)

−0.000
(0.000)

0.005
(0.002)



.

Volatilities and covariances are again reported in annualized terms, while the coefficients above the main

diagonal are correlations. Most elements ofΣPost have very tight posteriors and all the implied correlations

are identical (to the third decimal) to those found under MLE. Therefore also in this case, the seemingly

weak predictability from dividend yields must be supplemented by the evidence of precisely identified

simultaneous correlations between the dividend yield and excess stock and real estate returns.

4. Optimal Asset Allocation with Real Estate

4.1. Baseline, Buy-and-Hold Classical Weights

We start with the simplest of the portfolio allocation exercises: we consider an investor who commits her

initial, unit wealth for T years and who ignores parameter uncertainty. Initially we do not impose any

restrictions on the predictability model, i.e. report results for a full VAR(1) model (see Campbell, Chan,

and Viceira (2003)). Throughout, we set zt−1 to the full-sample mean values for excess returns and the

dividend yield.17

Figure 1 reports optimal portfolio weights for horizon between 1 month and 10 years, which is assumed

16For instance, the most important difference (in absolute terms) concerns the coefficients measuring the effects of the lagged

dividend yield on excess stock returns, which goes from 1.262 under MLE to a Bayesian posterior mean of 1.256.
17Our results therefore qualify as ‘simulations’ representative of the average properties of our estimated model rather than

actual end-of-sample (March 2004) portfolio recommendations.
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to represent the typical long-horizon objective. The exercise is repeated for three alternative values of

the coefficient of relative risk aversion, γ = 2, 5, and 10. Clearly, the latter represents rather a high risk

aversion coefficient and we expect that its adoption would completely bias our results against the riskier

assets and in favor of relatively safe bonds and cash investments. Modeling linear predictability patterns

seem to make a noticeable difference for portfolio choice, in the sense that short- and long-horizon portfolio

weights radically differ for all levels of γ. For instance, for γ = 2 (not an atypical choice in the asset

allocation literature, see Brennan et al. (1997) and Barberis (2001)), the 1-month allocation is 57% in real

estate, 41% in stocks, and 2% in bonds; however, under a 10-year horizon, the optimal weights become

50%, 42%, and 8%, respectively. This means that there is an important (8%) shift out of the riskier assets

and in favor of the safe bonds. Remarkably, cash is never demanded, i.e. the presence of relatively safer

bonds and predictability combine into an asset menu that can satisfy the risk-return trade-offs of even

highly risk-averse investors (γ = 10) without involving zero-variance assets.

Generally speaking, and consistently with results in the literature (see Kandel and Stambaugh (1996)

and Barberis (2000)), the weight invested in riskier assets appears to be a monotone increasing function of

the investment horizon. This is particularly evident for γ = 5 and 10, although the schedule characterizing

real estate is rather flat. The explanation is that predictability in the risk premium makes risky assets

less risky than what is conveyed by their standard deviations; this effect becomes stronger, the longer the

horizon an investor has over which to exploit the forecastability patterns. The best way to see this is to

focus on the multiperiod conditional variance of (say) the risky stocks implied by our VAR(1) framework:

V art[R
s
t,2] = V art

"
2X

k=1

(rst+k+r
f )

#

= V art

·
1P

k=0

(rf+µs+φssrst+k+φ
sbrbt+k+φ

srrrt+k+φ
sxxt+k+σ

2
sε

s
t+k+σsbε

b
t+k+σsrε

r
t+k+σsxε

x
t+k)

¸

= 2σ2s + (φ
sb)2σ2b + (φ

sr)2σ2r + (φ
sx)2σ2x + 2φ

sbσsb + 2φ
srσsr + 2φ

sxσsx,

which can be compared to V art[rst,1] = V art[rst+1] = σ2s. Given our MLE estimates, it turns out that

V art[R
s
t,2]

2V art[Rs
t,1]

< 1,

i.e. the conditional variance grows at a slower rate than the horizon because the following is negative:

(φsb)2σ2b + (φ
sr)2σ2r + (φ

sx)2σ2x + 2φ
sbσsb + 2φ

srσsr + 2φ
sxσsx < 0.

This results in an increasing allocation to stocks as T gets larger.18 The economic interpretation is that

when dividends fall unexpectedly (i.e. they are hit by some adverse shock), σsx, σrx < 0 imply that the

18In fact, replacing unknown coefficients with their MLE estimates gives:

(φ̂
sb
)2σ̂2b + (φ̂

sr
)2σ̂2r + (φ̂

sx
)2σ̂2x + 2φ̂

sb
σ̂sb + 2φ̂

sr
σ̂sr + 2φ̂

sx
σ̂sx = (0.07)

2
· 0.0002 + (0.07)2 · 0.0011+ (1.26)2 · 1.7e−06+

2 · 0.07 · 5e−05 + 2 · 0.07 · 0.0009− 2 · 1.26 · 6e−05 = −9.1e−06 < 0.

This number is only apparently negligible: for instance it is more than 5 times larger than the unexplained variance of the

dividend yield. Similar calculations may be performed for real estate. Since (φ̂
rs
)2, (φ̂

rb
)2, σ̂2x ' 0, while σ̂rx implies a

correlation of −0.57 < 0, φ̂
rx
= 0.65 > 0, and φ̂

rs
= 0.14 ' 0 and φ̂

rs
= 0.17 ' 0, then also for real estate, risk grows slower

than the investment horizon. However in this case the effect is smaller, which supports our findings of relatively flat investment

schedules for real estate assets.
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news will be likely accompanied by a positive, contemporaneous shock to excess stock and real estate

returns. On the other hand, since φsx, φrx >> 0, a currently diminished dividend yield forecasts future

lower risk premia on stocks and real estate. Hence the parameter configuration implied by the data leads

to a built-in element of negative serial correlation, as it is easy to show that processes characterized by

negative serial correlations are less volatile in the long- than in the short-run, due to mean-reversion effects.

Crucially, these effects may be of first-order importance even when the standard errors associated to many

of the coefficients in (2) are high and the estimated VAR(1) coefficients relatively small, as long as adequate

covariance loadings come through Σ̂ (in this case, σ̂sx << 0).

Finally, figure 1 shows another key result: The optimal allocation to bonds is generally monotone de-

creasing with T . However, this is fully explained by the statistical properties of the vector zt we have

modeled in Section 3 (see table 3). In particular, notice that bonds display a negligible covariance with

the dividend yield (σ̂bx implies a correlation of −0.06 only) and actually positive covariances with shocks
to stocks and real estate. This means that news affecting the variables (for us, the dividend yield) charac-

terizing investment opportunities will essentially leave current, realized bond returns unchanged and then

forecast future changes in risk premia of the same sign as the news. Therefore bonds will either be char-

acterized by a variance that grows at the same rate as T, or even by increasing risk over longer and longer

time horizons. This makes them rather safe assets for T = 1-2 years, although they become increasingly

risky and less attractive the longer the horizon.19

Another way to quantify the importance of predictability in determining rational portfolio choices when

real estate belongs to the asset menu can be derived by comparing the results in figure 1 with those one

can calculate assuming a simple model without any predictability patterns, i.e.

zt = µ+ ²t ²t i.i.d. N(0,Σ), (7)

with constant covariances as well as risk premia. We find that long-run asset allocations in the presence

of predictability are rather different than those obtained under the IID benchmark.20 For instance, when

γ = 5, the percentages to be invested in bonds are 42% vs. 54% under no predictability, 32% vs. 18%

for stocks, and 26 vs. 28% for real estate.21 Hence, also in this metric predictability implies a shift

19Figure 1 also shows some non-monotonic shapes, especially for γ = 2 and with reference to bonds, the weight of which

increases between T = 1 month and 12 and smoothly declines for the reasons explained above. This feature is explained by the

simulation nature of the results, i.e. the fact that in (2) we initialize zt−1 at its sample mean. Notice that while the full-sample

means for real returns are [0.0079 0.0060 0.0080 0.0263]0 , the estimated VAR(1) model implies unconditional means of:

E[zt] = (I4 − Φ̂)−1µ̂ = [0.0004 0.0047 0.0019 0.0233]0 .

Although these values make sense, as they imply positive mean real returns (and risk premia), notice that all mean returns

are systematically below the full-sample means. Therefore our initialization corresponds in fact to an economy in a period

of above-mean returns and dividend yields. Since most of the coefficients in Φ̂ are positive, initially high returns imply some

persistence in the assumed bull market conditions. In particular, it is easy to check through simulation experiments, that

using t−1 t
i=1 xi = 0.0263 > E[xt] = 0.0233 implies forecasts of high, above-mean excess returns on stocks and bonds at

horizons up to 6-12 months. This explains a transient effect by which the demand for stocks and real estate is particularly

high at a 1-month horizon, and the demand for bond relatively modest.
20As discussed in the Introduction, under (7) the optimal portfolio weights become independent of the horizon. In the

following we compare asset allocations under IID with those obtained under (2) for the T = 10 years case.
21The corresponding numbers are (for bonds, stocks, and real estate, respectively) 8-2%, 42-39%, 50-59% when γ = 2;

54-72%, 28-11%, 18-17% when γ = 10.
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out of bonds by 10% or more and into the riskier assets, mostly stocks. Obviously, the interpretation is

that the assets whose long-run risk is mitigated by the mean-reversion effects implied by (2) are in lower

demand under IID, the opposite for assets that are riskier the longer the horizon. Overall, it seems that

ignoring predictability altogether would in fact lead to inappropriate asset allocations. Section 5.1 further

investigates the welfare losses resulting from disregarding predictability.

In conclusion, a classical analysis implies that real estate ought to have an important role in simple,

buy-and-hold portfolio choices, especially when investors have a long-run perspective. Depending on the

assumed coefficient of relative risk aversion, we have found optimal real estate weights between 18 and

50% of the available wealth. These results are substantially higher than typical findings in the North

American literature based on simple mean-variance static portfolio theory: for instance, using annual US

data, Karlberg, Liu, and Greig (1996) and Ziobrowski, Caines, and Ziobrowski (1999) find that the optimal

fraction of wealth to be allocated in real estate is around 9%, in the range of 3-15%; in fact, for moderate

enough risk aversion levels, most of the investor’s wealth ought to be assigned to stocks, while bonds carry

a negligible weight.

4.2. Parameter Uncertainty Under Buy-and-Hold

We next proceed to calculate optimal portfolio weights for the case in which the investor adopts a Bayesian

approach, dealing with the buy-and-hold case first. Figure 2 reports portfolio weights as a function of T.

The effects of estimation risk manifest themselves with varying intensity at two distinct levels. On one

hand, accounting for parameter uncertainty does not radically change the structure of portfolios, especially

for low risk aversion and short horizons. For instance, for γ = 2, the 1-month allocation is identical to

the one derived ignoring parameter uncertainty as an investor who is not strongly risk averse will not be

affected by additional estimation risk, over short-horizons. The 10-year allocation is instead 31% in real

estate, 34% in stocks, and 35% in bonds, i.e. very close to an equally-weighted portfolio, rather different

from the 50%, 42%, and 8% weights found in Section in 4.1 for this case.22 The only major difference in

portfolio composition obtains under T = 10 years and high risk-aversion, and consists in the appearance of

positive weights invested in the riskless asset, as much as 40% . This makes sense as cash is not only the

safest among the assets but also the only one that completely escapes the additional uncertainty created

by estimation risk.

On the other hand, important modifications occur in the structure of the investment schedules as

a function of the horizon: while a classical investor will be characterized by weights to stocks and real

estate increasing with the investment horizon, when parameter uncertainty is taken into account these

schedules become either flat or weakly monotone decreasing. For instance, when γ = 5 the allocation to

real estate declines from 26% at 1-month to 16% at 10 years; the allocation to stocks is essentially flat

at 20-21%. Notice that the uncertainty deriving from estimation risk compounds over time, i.e. if it is

difficult to assess whether the predictability patterns help in asset allocation over a 1-month horizon, this

effect is magnified for longer planning periods. This means that the contrasting effects of the reduction

in long-run risk resulting from predictability − which would cause the investment schedules to be upward
sloping − and of estimation risk roughly cancel out for a long-horizon investor, with the result of either

22Gold (1993) reports a similar results for US optimal portfolios in a mean-variance framework in which investors protect

themselves against estimation risk by bootstrapping real estate returns.
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flat or weakly monotonically decreasing schedules.23 Additionally, it seems that the effects of parameter

uncertainty are equally strong for bonds as for the riskier assets, stocks and real estate. Notice in fact that

the posterior standard errors characterizing all the bond coefficients in table 4 are rather high. As a result,

bond investment schedules turn now strongly downward sloping, in fact giving way to a positive demand

for short-term cash deposits for T in excess of 4-5 years.

Once more, we provide a preliminary (see also Section 5) measure of the importance of predictability

under parameter uncertainty by calculating optimal portfolio weights under the no-predictability bench-

mark (7) and by comparing results to (2). Such an exercise is also helpful to quantify the pure effects of

parameter uncertainty on optimal portfolio weights.24 Figure 3 displays results through the usual set of

plots. Although they generally confirm the importance of real estate for portfolio choice purposes, these

plots also put further emphasis on our discussion of the separate effects of predictability vs. estimation risk.

In a system with no predictability but in which there is parameter uncertainty, the investment schedules

for both stocks and real estate are monotonically decreasing, i.e. as initially guessed estimation risk is

compounded and magnified by longer and longer investment horizons. Interestingly, the demand for cash

is completely absent, also for investors with high risk aversion. Moreover, the bond investment schedules

are now upward sloping, which confirms that there exists a differential of estimation risk that favors bonds

over riskier instruments. Finally, a comparison of figures 2 and 3 suggests that the estimation risk may be

particularly important when the number of estimated coefficients grows, i.e. when an investor tries to cap-

ture the uncertain predictability patterns using some parametric framework. In particular, the schedules

for bonds appear to change slope and a positive demand for cash investments appears when moving from

figure 3 to 2. This is consistent with larger degrees of parameter uncertainty plaguing (2) vs. (7) and with

the existence of first-order effects from the high posterior standard errors characterizing φbs, φbb, φbr, and

φbx.

In conclusion, adding back parameter uncertainty to the asset allocation problem changes a few of the

results found in Section 4.1, but leaves the overall picture intact: real estate is an important class that −
when predictability is measured and put to use through a Bayesian approach − ought to receive an optimal
long-run weight between 10 and 30%, depending on the assumed coefficient of relative risk-aversion.25 This

result is remarkably similar to the conclusions of de Roon, Eichholtz, and Koedijk (2002) for the US.

4.3. Dynamic Rebalancing

We assess the effects of dynamic rebalancing on the optimal real estate weights by computing portfolio

allocations when adjustment to the allocation is admitted every year (ϕ = 12) and the investors takes that

into account even when formulating long-horizon strategies with T >> ϕ. In particular, we focus on the

23In fact the real estate schedules turn downward sloping as a reflection of the weaker predictability effects found for this

asset class in Section 4.1.
24The coefficients in µ have posterior means of 0.005, 0.003, and 0.005 (the dividend yield is irrelevant in this case), and

standard errors of 0.005, 0.001, 0.003. Details on the posterior distribution of the coefficients in Σ are available upon request.
25Notice that when estimation risk is accounted for, our implications become rather implausible for γ = 10, when roughly

75% of the available wealth ought to be invested in either cash or bonds when the horizon is 10 years. Clearly, such implications

are at odds with the actual structure of the majority of observed managed portfolios, and simply reject γ = 10 as a plausible

specification for preferences.
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case in which the model is simplified to Barberis’ (2000) framework,
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i.e. when predictability is restricted to come from the dividend yield only and − consistently with available
results on North American markets (see e.g. Campbell, Lo, and MacKinlay (1987)) − past excess returns
fail to predict future returns.26 Given that this model simplifies the state space to one variable only (the

dividend yield), for the calculations that follow we use J = 20 discretization points for increased accuracy.

Once more, the initial dividend yield is set to its full-sample mean.

Column (a) of Figure 4 shows results for the classical case, when parameter uncertainty is ignored. A

comparison with Figure 1 reveals two important changes. First, rebalancing makes the resulting portfolio

investment schedules (as a function of the horizon) rather flat. Careful analysis of the plots reveals that

differences between optimal weights at T = 5 and at T = 10 are negligible. This makes sense as two investors

with either a five or a ten-year horizon that rationally discount the possibility to make unrestricted changes

to their optimal portfolios in only 12 months are unlikely to drastically differ in their current portfolio

choices. The fact that rebalancing tends to flatten optimal investment schedules for T >> ϕ has been

observed already by Brandt (1999) and Guidolin and Timmermann (2004, 2005) in related applications.

Second, differences between the rebalancing and buy-and-hold cases are modest but exist: in general,

rebalancing opportunities when the system is initialized at the full-sample mean dividend yield tend to

penalize the investments in the riskier assets, stocks and real estate.27 However, the demand for cash

investments remains nil for all levels of risk aversion. A dividend yield equal to its full-sample mean

may suggest some caution to a rational investor, who then waits for an improvement in the investment

opportunities by going longer in the relatively safe (especially over a relatively short period) bonds. In

general, even when rebalancing is admitted, real estate remains an important asset class, receiving a

weight always close to 20% or higher for all horizons and risk-aversion coefficients. On the other hand,

when rebalancing is possible, an investor aggressively tries to exploit the available information: for instance,

when γ = 5 and the horizon is long (ten years), the real estate weight is only 10% when dyt = 2.2%, it

increases to 21% for dyt = 2.6%, and becomes 28% for dyt = 3.2%. Importantly, all these values of the

dividend yield were observed over our sample period.28

Column (b) of Figure 4 reports instead results for the Bayesian case. For this exercise, the number of

simulations is increased from 100,000 to 200,000 independent trials to accommodate the complex drawing

loops needed to approximate the Bayesian predictive density and reduce randomness deriving from the use

of simulations. Once more, we start with the simplified model in (8). Introducing rebalancing opportunities

in a Bayesian framework has two major effects. First, it brings down to zero the demand for 1-month

26In this case, the dividend yield predicts with some accuracy (i.e. the related coefficients are significant at 10%) both stocks

and bonds, and the higher the dividend yield, the higher the risk premia on assets. The dividend yield remains considerably

persistent and there is substantial negative correlation between shocks to excess stock and to real estate returns and dividend

yield shocks. Complete results are available upon request.
27For instance, at T = 3 years, the optimal weights in real estate under rebalancing are 42% (vs. 43% under buy-and-hold)

for γ = 2, 21% (vs. 23%) under γ = 5, and 14% (vs. 16%) under γ = 10.
28Section 6.2 provides further analysis on the effects of changing predictor variables on optimal weights.
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deposits: while under buy-and-hold and γ ≥ 5 the optimal cash weight was positive for horizons exceeding
4-5 years, rebalancing does flatten the demand for the less risky asset to nothing. This is consistent with

the idea that rebalancing makes a rational investor more aggressive (i.e. less risk-averse) as the possibility

to switch out of risky portfolio positions well ahead of the planning horizon exists.29 A similar, albeit less

strong effect is obtained with reference to bonds, for which the long-run demand declines from 35-45%

under buy-and-hold to less than 20% (zero assuming γ = 2). Second, rebalancing shifts up the demand

for stocks and (to a lesser extent) real estate and makes the corresponding investment schedules upward

sloping for horizons in excess of 1 year (i.e. those affected by our annual rebalancing assumption). Also in

this case, most of the effects occur at horizons between 1 and 4 years, as for long-run investors schedules

are typically flat, as observed before.

5. Welfare Cost Analysis

Even though Section 4 has provided abundant evidence that (i) real estate enters the optimal long-run port-

folio composition with non-negligible weights when asset returns are predictable, and that (ii) predictability

has important effects on portfolio weights, it remains very difficult to reach definitive conclusions on the

economic importance of the implied effects for expected utility maximization. Therefore we follow Ang

and Bekaert (2002), Ang and Chen (2002), Guidolin and Timmermann (2004, 2005), and Lynch (2001),

and obtain estimates of the welfare implications of restricting the asset allocation problem in any of its

dimension, like the breadth of the asset menu or the richness of the statistical model used to describe the

multivariate process of asset returns.

Call ω̂R
t the vector of portfolio weights obtained imposing restrictions on the problem. For instance, ω̂

R
t

may be the vector of optimal asset demands when the investor is forbidden from investing in real estate.

We aim at comparing the investor’s expected utility under the unrestricted models entertained in Section

4 − and leading to some optimal set of controls ω̂t − to that derived assuming the investor is constrained
to choose at time t the restricted optimum, ω̂R

t . Define now V (Wt, zt; ω̂t) the optimal value function of the

unconstrained problem, and V (Wt, zt; ω̂
R
t ) the ‘constrained’ value function. Since a restricted model is by

construction a special case of a more general, unrestricted model, the following holds:

V (Wt, zt; ω̂
R
t ) ≤ V (Wt, zt; ω̂t).

We compute the compensatory premium, πRt , that an investor with relative risk aversion coefficient γ is

willing to pay to obtain the same expected utility from the constrained and unconstrained problems as:

πRt =

·
V (Wt, zt; ω̂t)

V (Wt, zt; ω̂
R
t )

¸ 1
1−γ

− 1. (9)

The interpretation is that an investor endowed with an initial wealth of (1 + πRt ) would tolerate to be

constrained to solve a restricted problem leading to V (Wt, zt; ω̂
R
t ) ≤ V (Wt, zt; ω̂t). Several restrictions are

analyzed in what follows. For simplicity, we limit ourselves to consider simple buy-and-hold strategies.30

29This remark applies only when the simulations are initialized in (relatively) good market conditions. For instance, when

dyt = 1.2% (i.e. prices are relatively high), the demand for cash by a 10-year horizon investor with γ = 5 is 68%, i.e.

rebalancing makes it rational to wait on the sidelines and invest more than two-thirds in the safe asset.
30These clearly give lower bounds to the implied welfare costs, see e.g. Guidolin and Timmermann (2005). As a matter
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5.1. Cost of Ignoring Predictability

We first calculate the πRt implied by forcing an investor to ignore predictability altogether, i.e. to pretend

that (7) is correctly specified while we have evidence (see Section 3) that in fact (2) is a better model. As

observed in Section 5, this would lead to ‘incorrect’ portfolio choices. We now quantify the costs of these

mistakes. These are presented in figure 5, once more as a function of the alternative levels of the horizon

T and of γ. In particular, panel (a) refers to the classical case. Clearly, the implied welfare costs from

model misspecifications strongly depend on the assumed coefficient of relative risk aversion, in the sense

that they are the higher the lower γ is.31 Generally speaking, especially if a Reader considers γ = 2− 5 as
the most plausible range for risk aversion, the implied welfare costs are far from negligible, and in the case

of long-horizon investors they range between 3 and 10% of the initial wealth. This means that a rational

investor with γ = 2 would require a (riskless) annual increase in the returns generated by her portfolio in

the order of approximately 95 basis points, for him to accept to work under and make portfolio decisions

based on a misspecified IID model that disregards predictability altogether.

Panel (b) of figure 5 presents instead results for the Bayesian portfolio choice case, when estimation

risk is incorporated in optimal decisions. In this case, the implied utility loss seems to be somewhat larger

and especially rather independent of the coefficient of relative risk aversion. At long horizons, the welfare

loss is always between 10 and 12% of the initial wealth, which corresponds to a required, (riskless) annual

increase in the returns generated by the portfolio of approximately 100 basis points. The reasons of the

larger utility losses under parameter uncertainty vs. the classical case in panel (a) are related to the fact

that while in panel (a) ω̂IID
t is anyway very close to the optimal, long-run ω̂t, in panel (b) this is not the

case: as shown by figures 2 and 3, for large T portfolio choices are structurally different, especially because

in figure 2 implies substantial cash investments that are not found when predictability is ignored. All in all,

we interpret the evidence in figure 5 as consistent with the idea that ignoring predictability is associated

with welfare losses of substantial magnitude.

5.2. Cost of Excluding Real Estate

Although the evidence on the economic value of predictability is important, our key question remains

open: How important is real estate in asset allocation problems, i.e. what is the welfare loss associated

with restricting portfolio choice from involving real estate? Given the finding that ignoring predictability

may be largely suboptimal, especially when estimation risk is taken into account, we analyze the utility

losses when the investor exploits the evidence of predictability provided by (2).

As a first step, table 5 presents classical MLE estimates along with t-ratios for the case in which n = 2,

i.e. the asset menu is limited to stock, bonds, and cash. Obviously, the expressions and results in Section 2.1

still apply (e.g. (3)). Table 5 stresses that on a restricted asset menu, the evidence of predictability becomes

extremely weak, in the sense that only stock returns exhibit some degree of persistence and the dividend

yield is a somewhat imprecise predictor of subsequent excess stock returns; the marginal distribution of

of fact, under dynamic rebalancing predictability gives an investor a chance to aggressively act upon the information on zt;

therefore ignoring predictability when rebalancing is possible implies even higher (sometimes enormous) utility costs. A similar

reasoning applies to restrictions on the asset menu, in the sense that depriving investors of useful assets hurts them the most

the highest is the frequency with which they can switch in and out of the assets themselves.
31This finding is not new, see e.g. Campbell and Viceira (1999) and Guidolin and Timmermann (2005).
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excess bond returns seems to be well approximated by a Gaussian i.i.d.. In a way, real estate may help in

asset allocation problems as it seems to be capable to bring out more precise predictability structure in risk

premia. The left column of plots in figure 6 shows ‘classical’ asset allocation results under this restricted

asset menu. Results are consistent with the general patterns isolated in Section 4.1: the demand for

stocks increases with the investment horizon as their riskiness actually declines thanks to the predictability

implied by (2); on the opposite, the bond investment schedule is downward sloping. There is no demand

for cash assets independently of the degree of relative risk aversion. Figure 7, panel (a), shows the implied

welfare costs from excluding real estate from the portfolio problem. In this case, the utility loss is clearly

increasing in the coefficient of relative risk aversion. Even in the case of intermediate risk aversion (γ = 5)

the welfare loss at a short horizon of one year only is of 70 basis points; the loss for a long horizon investor

exceeds a total of 9% of the initial wealth, i.e. almost 90 basis points a year. Such figures double or even

triple if one considers a highly risk-averse investor; e.g., under a 10-year horizon and assuming γ = 10, the

loss is in the order of 200 basis points per year. This means that especially under long planning horizons,

including real estate in the asset menu should represent a primary concern for all portfolio managers.

Table 6, and figures 6 and 7 complete the picture by reporting results for the Bayesian problem, when

parameter uncertainty is kept into consideration. Table 6 gives Bayesian posterior means and standard

deviations for the restricted VAR model in which n = 2, i.e. excluding real estate excess returns. Posterior

means are very close to MLE estimates, and standard errors confirm the results in table 5: the evidence

of predictability is weak and only stock returns exhibit some degree of persistence. Figure 6 plots instead

optimal asset allocations and obtains differences between classical and Bayesian portfolio weights consistent

with our comments in Section 4: positive weights on liquid investments appear for γ ≥ 5 under parameter
uncertainty, as a protective measure against the additional uncertainty deriving from the fact the coefficients

are random; while the equity investment schedule is generally upward sloping in a classical framework (an

effect of predictability), the Bayesian allocation to stocks tends to decline with the investment horizon.

Finally, figure 7 displays the percentage compensatory variation from excluding real estate from the asset

menu. In this case, results are similar to the classical ones, i.e. the loss from ignoring real estate may easily

exceed 100 basis points per year for either highly risk-averse and/or for long-horizon investors.

6. Robustness Checks

We conclude by performing a few additional exercises that aim at corroborating our results and show that

they scarcely depend on specific assumptions concerning the statistical model, how the state variables are

initialized, and the measurement of the welfare loss implied by solving ‘standard’ portfolio problems in

which the predictable nature of risk premia is ignored and the attention is focused on a standard mean-

variance benchmark (cf. Elton et al. (2004)). For all experiments, wherever they are not fully reported in

the paper, complete results are available upon request.

6.1. Restricted VAR Results

One naturally wonders whether our results on the importance of predictability and real estate in rational

portfolio choices for a European portfolio manager depend in any way on two choices we have made: (i)

similarly to Campbell, Chan, and Viceira (2003) (and differently from other papers, e.g. Barberis (2000)
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and Lynch (2001)) we have considered an unrestricted VAR(1) model in which past excess returns are

allowed to forecast future excess returns as well as dividend yields; (ii) within such a model, we have

disregarded the statistical significance of the estimates obtained, i.e. predictive densities were defined on

the basis of a number of parameters characterized by relatively large standard errors. We therefore run

experiments in which both these aspects are dealt with.

First, we apply the same statistical restrictions employed in Barberis (2000) by preventing past excess

asset returns from forecasting both future returns and dividend yields. Equivalently, we restrict the model

so that only the dividend yield forecasts subsequent excess returns in a linear fashion. Clearly, this is just

model (8) employed in Section 4.3 for our dynamic portfolio simulations. The buy-and-hold calculations are

repeated for both the classical and Bayesian cases. In both frameworks, results are qualitatively similar to

those reported in figures 1 and 2. However, the restrictions in (8) seem to slightly inflate the optimal weights

assigned to stocks and real estate, i.e. to improve their mean-risk trade-off. For instance, assuming γ = 5

and T = 10 years, the stock and real estate weights go from 32 and 26 percent, respectively, under model

(2) to 36 and 33 percent under (8). Clearly, an increase of 7 percentage points in the real estate holdings

over the long-run is rather important, at least in economic terms. However, our early conclusion that at

least one-fifth or more of an optimal, European portfolio should be held in real estate assets continues to

hold, and is actually strengthened by these experiments.

Secondly, we enforce a second type of statistical restrictions: we start from the general model in (2) but

proceed to set to zero all the VAR coefficients that fail to be statistically significant according to a standard,

classical t-ratio test with a significance level of 10%. The resulting VAR model is the one in Table 3 with all

the non-boldfaced coefficients in Φ set to zero. Although formal tests would imply a different technology

(and language) based on odds ratios, for comparison purposes identical restrictions are also enforced in the

Bayesian set up. Also in this case, we focus on buy-and-hold results only. Classical results are virtually

indistinguishable from those in figure 1. If any, restricting our attention to predictability parameters that

are ‘statistically significant’ implies an increased weight to be assigned to real estate (the returns on which

are predictable from lagged excess bond returns).32 Interestingly, Bayesian results are different from those

reported in figure 2 in one specific respect: while in Figure 2 schedules were essentially flat − a finding that
we have interpreted as a result of the compensation between predictability and parameter uncertainty −
when non-significant parameters are eliminated, investment schedules as a function of the horizon become

generally downward sloping. This means that the (negative, in terms of slope) effects of the reduced risk

premia predictability induced by the elimination of many VAR coefficients are stronger than the (positive)

effects of the reduction in parameter uncertainty caused by the elimination of just those coefficients that

in table 3 happened to be estimated less precisely. In any event, also in this case it remains true that

roughly one-fifth of the portfolio ought to be held in the form of real estate assets. In fact, calculations of

welfare costs of expelling real returns from the asset menu corroborate this claim: real estate should be a

first-order concern in applied portfolio management.

6.2. Sensibility of Optimal Weights to the Dividend Yield

With limited exceptions, all of our simulation experiments so far have been based on initializing the dividend

yield to its full-sample mean of 2.6%. Under this assumption on a plausible value for dyt, we have found that

32Assuming γ = 5 and T = 10, the restricted real estate weight is 28% vs. an unrestricted 26%.
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under predictable risk premia, real estate represents an important asset class that ought to complement

stocks and bonds in optimal long-run portfolios. However, it remains natural to ask whether this conclusion

is robust to different assumptions concerning the dividend yield, especially given the observation that table

1 implies that all yields in the interval [0.9 4.3] percent have to be considered ‘plausible’ as they fall in a

90% confidence interval.33 Figure 8 plots the resulting optimal asset allocation choices as the dividend yield

changes over a wide range of possible initial (current) values in simulation experiments. Several exercises

are performed corresponding to alternative assumptions concerning the coefficient of relative risk aversion

(γ = 2 or 5), the horizon (T = 1 and 10 years), and the rebalancing frequency (ϕ = 1 year and ϕ = T, i.e.

buy-and-hold). However, to simplify calculations, we only report classical results that ignore parameter

uncertainty. The qualitative insights are similar for the Bayesian case.

Results for stocks and bonds are those one would expect from first principles: as a higher dividend yield

forecasts good future (equity) investment opportunities, the optimal stock weight is monotone increasing in

dyt for all γs, T s, and ϕs; on the opposite, the rational bond weight is generally monotonically decreasing

in the dividend yield. Such a statement admits one qualification: for γ = 5, the bond schedule is actually

increasing for dyt between 1 and 1.5%. This is explained by the fact that for intermediate risk aversion and

extremely poor investment opportunities (i.e. assuming a very low initial dividend yield, an indication of

abnormally high asset prices) an investor would actually reduce the demand for bonds and invest in cash

in percentages between 10 and 50 percent. However, for dividend yields in excess of 1.5%, the demand

for cash disappears entirely, consistently with the results reported in Section 4.1. More importantly, the

optimal demand for real estate is positive and not negligible for a wide range of dividend yield values,

especially those around the full-sample mean (i.e. between 2 and 3%). Visibly, the optimal real estate

weight is especially high (20-50 percent) for long-run investors with T = 10 years. Interestingly, over the

interval 2-3 percent, the demand for real estate seems to only weakly depend on the exact value taken by

the initial dividend yield, while a few inverted U-shapes appear. Since most of the observed sample values

for the dividend yield do fall in the range 2-3 percent, Figure 8 implies in principle a very stable demand

for real estate, in the range 10-30%.34 Figure 8 makes us speculate that real estate may somehow represent

the pillar, the ‘backbone’ of strategic asset allocation for European portfolio managers.

6.3. Welfare Costs of Excluding Real Estate Under Constant Investment Opportunities

Section 5 has assessed the long-run welfare costs of ignoring predictability in approximately 100 basis

points per year, i.e. a rational investor should request a riskless increase of the annual returns from his

wealth in the order of 1 percent a year. A similar result was obtained for the compensatory variation that

should be required to ignore real estate as an asset class in addition to stocks, bonds, and cash financial

investments. However, this last estimate has been obtained assuming that predictability should and would

not be ignored by a rational portfolio manager. Even though we believe that the statistical evidence in

favor of the existence of predictability patterns in mean excess returns is strong and that a welfare cost

of roughly 1% a year ought to be a major incentive for investors not to ignore predictability, it remains

interesting to repeat the calculations of Section 6.2 when predictability is ignored and excess returns are

generated by the simple model (7).

33In fact, over our sample period dividend yields between 1.7 and 3.7 percent were observed.
34In fact, more than 60% of the available observations fall in the 2-3 percent range.
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In the classical case, we obtain a picture that is very similar to Figure 7(a): the cost of excluding real

estate grows with the coefficient of risk aversion; for long-run investor with γ = 5, the cost is in the order

of 80 basis points a year, and this estimate grows to exceed 200 basis points when γ = 10 is considered.

This implies that the cost of ignoring real estate scarcely depends on the whether predictability is modeled

or not, although it is clear that the welfare gains from doing so remain substantial. Similar calculations

are performed in the Bayesian case. We find that welfare costs of ignoring real estate are actually higher

when predictability is ignored altogether.35 In fact, Figure 3 has shown that the optimal real estate weight

is higher by 10-15 percent vs. the case in which predictability is taken into account (figure 2). This is

easily explained by the fact that in tables 2 and 3, real estate excess returns were characterized by rather

weak predictability patterns so that it is not difficult to think that the demand for real estate may be hurt

in net terms by the existence of estimation uncertainty. In this sense, restricting our exercise to the case

of i.i.d. excess asset returns may bring − when parameter uncertainty is taken into account − to a higher
estimate of the utility loss deriving from ignoring real estate. In conclusion, the welfare losses reported and

discussed in Section 5.2 represent at best a lower bound for the utility costs of omitting real estate when

choosing optimal European portfolios.

7. Conclusions

In this paper we have documented the existence of linear predictability patterns − described by a simple
VAR(1) framework − in an asset menu that involves both financial and real estate excess returns. In

particular, excess stock and real estate returns predict subsequent real estate and bond excess returns

respectively. Moreover, real estate and stock return shocks are negatively correlated with dividend news

shocks. Both facts make stock and real estate returns less risky as the horizon grows. As a result,

when we calculate optimal portfolio weights based on the MLE estimates of the VAR coefficients, we find

portfolio weights for stocks and real estate that are monotone increasing in the planning horizon. Stocks,

bonds, and real estate do not appear excessively risky to a long-run investor, so that the demand for cash

is rather limited or even absent. These findings are robust to the adoption of a Bayesian approach that

incorporates estimation risk into the formal portfolio problem, although the trade-off between predictability

and parameter uncertainty makes for flatter investment schedules.

In this framework, we find that real estate has a considerable importance, both in absolute terms − as
measured by the portfolio weights resulting from the problem − and in welfare terms: the compensatory
variation required by an investor to do without real estate is easily in excess of 100 basis points per

year. Although the welfare costs deriving from ignoring predictability would be of similar importance, it

is interesting to notice that the conclusions above concerning the utility loss from expelling real estate

from the asset menu do not depend on the finding of predictability. As a matter of fact, our robustness

checks in Section 6 suggest that our estimates for the optimal real estate weights and welfare losses from

restricting the asset menu are probably only a lower bound for higher estimates obtainable under alternative

assumptions. For instance, it would be interesting to perform some of the calculations in this paper using

indirect indices, that traditionally imply a much smaller correlation with stock and bond returns and hence

offer greater diversification opportunities.

In policy terms, our paper implies that preferences and horizons exist that justify both the British

35For instance, assuming γ = 5, the cost for a 10-year horizon investor exceeds 120 basis points a year.

23



and the continental European patterns of long-horizon portfolio diversification for pension institutions. In

particular, the German-French pattern is consistent with the rational choices of portfolio managers that

display high risk aversion, worry about estimation risk, and have investment horizons between 5 and 10

years. On the contrary, investing four-fifths of one’s wealth in risky assets - as in the Anglo-Saxon pattern-

may be optimal for investors with low risk aversion disregarding parameter uncertainty. However, in this

case real estate ought to receive a weight at least as important as stocks, which is not the case. Our results

on optimal asset allocation also stress the potential rationality of current practices with a subset of pension

fund managers of targeting a real estate exposure of roughly 10%-20% of their overall managed assets,

although cases were found were real estate may have received a higher weight.

Of course, there are many issues that this paper merely touches upon. In particular, we have ignored

transaction costs throughout. On one hand, this is consistent with our choice to use an indirect real estate

return index based on the behavior of the market price of the equity issued by companies involved in real

estate operations: it makes sense to entertain the assumption that the frictions associated in trading in

these companies may not be structurally different from the market average. Furthermore, even assuming

that real estate implies higher transaction costs than financial securities, it remains difficult to think that

such a differential may easily exceed a full one percent of total initial wealth of the investor (also considering

that only 10-30 of this wealth ought to be invested in real estate). On the other hand, recent papers (e.g.

Balduzzi and Lynch (1999)) have shown how dynamic portfolio choices may be computed in the presence

of transaction costs. Such an effort seems to be particularly appropriate for assets in the real estate class.

We leave these further exciting explorations for future research.
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Table 1 

Summary Statistics for Asset Returns and the Stock Dividend Yield 

The table reports summary statistics for monthly total excess return series (including dividends, coupon distributions, 
adjusted for splits, etc.) for the 3-month JP Morgan Euro Cash Index, stocks, bonds, and real estate investments. The 
sample period is March 1993 � March 2004. All returns are expressed in euros. Return data for stocks, bonds, and real 
estate are in excess of the real risk-free rate. The sources of the data are: DataStream (European Equity Index), 
Citigroup (bond index, a weighted basket with maturities of five years and longer), and EPRA (Real Estate Liquid 40 
Index). The real risk-free rate is calculated by subtracting the European harmonized consumer price inflation index 
from nominal returns. Means, medians, and standard deviations are annualized by multiplying monthly moments by 12 

and 12 , respectively. LB(j) denotes the j-th order Ljung-Box statistic. The last row reports statistics for the dividend 
yield calculated on the DataStream Equity Return Index. 

 

Portfolio/Asset Class Mean Median St. Dev. Skewness Kurtosis
Jarque- 

Bera 
LB(4) 

LB(4)- 
squares

3-month Euro cash (real) 0.030 0.025 0.013 0.515 3.748 8.969* 12.201* 8.959 

Excess stock returns 0.065 0.115 0.172 -0.751 3.874 16.723** 4.018 22.933**

Excess bond returns 0.042 0.065 0.054 -0.550 3.422 7.701* 3.700 4.244 

Excess real estate returns 0.066 0.080 0.125 -0.368 3.439 4.077 10.889* 1.272 

Dividend Yield 0.026 0.027 0.017 -0.158 2.016 5.921 474.35** 465.38**

* denotes 5% significance, ** significance at 1%. 

 

 

 

 

Table 2 

Correlation Matrix of Excess Asset Returns 

The table reports linear correlation coefficients for monthly excess total return series. The sample period is March 1993 
� March 2004. All returns are expressed in euros. 

 
Excess stock 

returns 
Excess bond 

returns 
Excess real 

estate returns 
Dividend Yield 

Excess stock returns 1 0.067 0.558 -0.133 

Excess bond returns  1 0.199 0.103 

Excess real estate returns   1 -0.063 

Dividend Yield    1 
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Table 3 

Classical Parameter Estimates for a VAR(1) Model of Excess Returns and the Dividend Yield 

The table reports the MLE estimation outputs for the Gaussian VAR(1) model: 

ttt zz ε+Φ+= −1µ  

where zt  includes continuously compounded monthly excess asset returns and the dividend yield, and ),( ~ Σ0ε Nt . t 

statistics are reported in parenthesis under the corresponding point estimates. Bold coefficients imply a p-value of 0.1 or 
lower. 
 

 
Stockst Bondst 

Real 
Estatet 

Dividend 
Yieldt 

 µ� 
 -0.029 

(-1.235) 
-0.004 

(-0.562) 
-0.014 

(-0.854) 
0.001 

(1.963) 
 B� 

Stockst-1 
0.109 

(1.028) 
0.028 

(0.864) 
0.143 

(1.947) 
-0.001 

(-0.249) 

Bondst-1 
0.072 

(0.253) 
0.066 

(0.749) 
0.165 

(0.832) 
-0.002 

(-0.257) 

Real Estatet-1 
0.067 

(0.448) 
-0.114 

(-2.478) 
0.110 

(1.055) 
-0.003 

(-0.796) 

Dividend Yieldt-1 
1.262 

(1.428) 
0.290 

(1.064) 
0.651 

(1.058) 
0.952 

(40.238) 
 

 

Table 4 

Bayesian Coefficient Estimates for a VAR(1) Model of Excess Returns and the Dividend Yield 

The table reports the Bayesian posterior means for the coefficients of the Gaussian VAR(1) model: 

ttt zz ε+Φ+= −1µ  

where zt  includes continuously compounded monthly excess asset returns and the dividend yield, and ),( ~ Σ0ε Nt . 

The standard errors of the Bayesian posterior densities are reported in parenthesis under the corresponding posterior 

means. The posteriors are obtained from a standard uninformative prior, 
2)/2-(n||)p(C, +Σ∝Σ , where C = [µ� Φ�]� is the 

matrix of the coefficients in the VAR model and n is the number of variables (4) in the multivariate system. 
 

 
Stockst Bondst 

Real 
Estatet 

Dividend 
Yieldt 

 µ� 
 -0.029 

(0.024) 
-0.004 
(0.007) 

-0.014 
(0.017) 

0.001 
(0.001) 

 B� 

Stockst-1 
0.109 

(0.108) 
0.028 

(0.033) 
0.143 

(0.074) 
-0.001 
(0.003) 

Bondst-1 
0.075 

(0.293) 
0.066 

(0.090) 
0.166 

(0.204) 
-0.002 
(0.008) 

Real Estatet-1 
0.068 

(0.151) 
-0.114 
(0.047) 

0.111 
(0.105) 

-0.003 
(0.004) 

Dividend Yieldt-1 
1.256 

(0.896) 
0.289 

(0.278) 
0.653 

(0.625) 
0.952 

(0.024) 
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Table 5 

Classical Parameter Estimates for a VAR(1) Model of Excess Returns and the Dividend Yield � 

Restricted Asset Menu 

The table reports the MLE estimation outputs for the Gaussian VAR(1) model: 

ttt yy ηµ +Φ+= −1  

where zt  includes continuously compounded monthly excess asset returns and the dividend yield (but not excess real 

estate returns), and ),( ~ Λ0N
t

η . t statistics are reported in parenthesis under the corresponding point estimates. Bold 

coefficients imply a p-value of 0.1 or lower. 
 

 
Stockst Bondst 

Dividend 
Yieldt 

     µ� 
 -0.029 

(-1.248) 
-0.004 

(-0.612) 
0.001 

(1.980) 

                      B� 

Stockst-1 
0.135 

(1.558) 
-0.017 

 (-0.603) 
-0.002 

(-0.840) 

Bondst-1 
0.096 

(0.349) 
0.025 

(0.289) 
-0.003 

(-0.420) 

Dividend Yieldt-1 
1.257 

(1.449) 
0.298 

(1.086) 
0.952 

(40.932) 
 

 

 

Table 6 

Bayesian Coefficient Estimates for a VAR(1) Model of Excess Returns and the Dividend Yield � 

Restricted Asset Menu 

The table reports the Bayesian posterior means for the coefficients of the Gaussian VAR(1) model: 

ttt zz ε+Φ+= −1µ  

where zt  includes continuously compounded monthly excess asset returns and the dividend yield (but not excess real 

estate returns), and ),( ~ Σ0ε Nt . The standard errors of the Bayesian posterior densities are reported in parenthesis 

under the corresponding posterior means. The posteriors are obtained from a standard uninformative prior, 
2)/2-(n||)p(C, +Σ∝Σ , where C = [α� B�]�. 

 

 
Stockst Bondst 

Dividend 
Yieldt 

           µ� 
 -0.029 

(0.024) 
-0.004 
(0.008) 

0.001 
(0.001) 

                      B� 

Stockst-1 
0.135 

(0.089) 
-0.017 

 (0.028) 
-0.002 
(0.002) 

Bondst-1 
0.095 

(0.285) 
0.025 

(0.090) 
-0.003 
(0.008) 

Dividend Yieldt-1 
1.259 

(0.895) 
0.298 

(0.283) 
0.952 

(0.024) 
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Figure 1 

Buy-and-Hold Optimal Allocation � Ignoring Parameter Uncertainty 
The graphs plot the optimal portfolio weights as a function of the investment horizons when returns follow a Gaussian 
VAR(1) model and parameter uncertainty is ignored (i.e. classical MLE estimates are employed). Three alternative 
coefficients of relative risk aversion are employed. 
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Figure 2 

Buy-and-Hold Optimal Allocation � Effects of Parameter Uncertainty 
The graphs plot the optimal portfolio weights as a function of the investment horizons when returns follow a Gaussian 
VAR(1) model and parameter uncertainty is accounted for (i.e. Bayesian predictive densities are employed). The 

posteriors are obtained from a standard uninformative prior, 
2)/2-(n||)p(C, +Σ∝Σ , where C = [α� B�]� is the matrix of 

the coefficients in the VAR model and n is the number of variables (4) in the multivariate system. 
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Figure 3 

Buy-and-Hold Optimal Allocation � No Predictability and Parameter Uncertainty 
The graphs plot the optimal portfolio weights as a function of the investment horizons when returns follow a Gaussian 
IID model and parameter uncertainty is accounted for. The posteriors are obtained from a standard uninformative 

prior, 
2)/2-(n||),p( +Σ∝Σµ , where n is the number of variables in the system. 
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Figure 4 

Optimal Dynamic Portfolio Allocation under Predictable Returns 
The graphs plot the optimal portfolio weights as a function of the investment horizons when returns follow a Gaussian 
VAR(1) model and the investor rebalances her portfolio once a year  The VAR is restricted so that only the dividend 
yield predicts future risk premia. Column (a) refers to the case in which parameter uncertainty is ignored, column (b) to 
the Bayesian case in which estimation risk is taken into account. When the horizon T exceeds or is equal to the 
rebalancing frequency φ = 12 months, optimal weights coincide with those obtained under buy-and-hold strategies. 
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Figure 5 

Welfare Costs � Ignoring Predictability 
The graphs plot the percentage compensatory variation associated with ignoring the existence of predictability patterns 
in the data, i.e. with using a Gaussian IID model instead of a VAR(1) model. Panel (a) concerns the classical case in 
which MLE parameter estimates have replaced the unknown coefficients; panel (b) the Bayesian case in which 
parameter uncertainty is accounted for (i.e. Bayesian predictive densities are employed).  
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(b) Bayesian Estimates 
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Figure 6 

Buy-and-Hold Optimal Allocation � Restricted Asset Menu 
The graphs plot the optimal portfolio weights as a function of the investment horizons when returns follow a Gaussian 
VAR(1) model. Three alternative coefficients of relative risk aversion are employed. The asset menu is restricted to the 
riskless asset, stocks, and bonds only. Column (a) refers to the case in which parameter uncertainty is ignored (i.e. 
classical MLE estimates are employed), column (b) to the Bayesian case in which estimation risk is taken into account. 
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Figure 7 

Welfare Costs � Ignoring Real Estate 
The graphs plot the percentage compensatory variation associated with ignoring real estate as an asset class, i.e. with 
limiting an investor�s portfolio choice to stock, bonds, and cash. Panel (a) concerns the classical case in which MLE 
parameter estimates have replaced the unknown coefficients; panel (b) the Bayesian case in which parameter uncertainty 
is accounted for (i.e. Bayesian predictive densities are employed).  
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(b) Bayesian Estimates 
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Figure 8 

Sensibility of Optimal Portfolio Weights to the Dividend Yield 
The graphs plot the optimal portfolio weights to each asset class as a function of the initial dividend yield under a 
variety of assumptions on the coefficient of relative risk aversion (2 or 5), the investment horizon (1 or 10 years), and 
the rebalancing frequency (annual or identical to the investment horizon, the buy-and-hold case). Excess asset returns 
are assumed to follow a Gaussian VAR(1) model and estimation is performed either with classical (MLE) (i.e. 
disregarding parameter uncertainty) methods. In each plot, the dotted vertical bar indicates the full-sample mean 
dividend yield and hence locates the portfolio results previously reported in figures 1, 2, and 4. 
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