

Working Paper 85/09

THE LIFE-CYCLE INCOME ANALYSIS MODEL (LIAM):
A STUDY OF A FLEXIBLE DYNAMIC

MICROSIMULATION MODELLING COMPUTING
FRAMEWORK

Cathal O’Donoghue

John Lennon
Stephen Hynes

April 2009

The Life-Cycle Income Analysis Model (LIAM): A Study of a Flexible
Dynamic Microsimulation Modelling Computing Framework1

Cathal O’Donoghue , John Lennon, Stephen Hynes

 Rural Economy Research Centre (RERC), Teagasc, Ireland

Abstract
This paper describes a flexible computing framework designed to create a dynamic
microsimulation model, the Life-cycle Income Analysis Model (LIAM). The principle
computing characteristics include the degree of modularisation, parameterisation,
generalisation and robustness. The paper describes the decisions taken with regard to type
of dynamic model used.
The LIAM framework has been used to create a number of different microsimulation
models, including an Irish dynamic cohort model, a spatial dynamic microsimulation model
for Ireland, an indirect tax and consumption model for EU15 as part of EUROMOD and a
prototype EU dynamic population microsimulation model for 5 EU countries.

Keywords: Microsimulation, Computation.

1. Introduction

Population-based dynamic microsimulation models are programs that are used to
forecast populations into the future and to assess the impact of economic and
demographic change on public policy. In particular these models have been used to
analyse existing policy and to design policy reforms in inter-temporal policies such as
education, pensions, long-term care and spatial policy.

The objective of this modelling framework is to incorporate the time dimension into
policy analysis. Using models based on cross-section data simply allows one to look
at the effect of policy at one point in time. Using cross-sectional data one is limited in
the simulation of policy instruments which depend on inter-temporal factors such as
pensions. A dynamic microsimulation life cycle model allows one to examine policy
over time; for example life course redistribution, forecasts of cross-sectional
redistribution and the simulation of pensions. We describe an innovative computing
framework used to create dynamic microsimulation models.

1 Acknowledgements: The authors gratefully acknowledges financial assistance from the Postgraduate
Fellowship of the Economic and Social Research Institute, Dublin, the Irish Department of Agriculture
Rural Stimulus Fund, Center for Research on Pensions and Welfare Policies (CERP), University of
Turin, the NUIG Millennium fund, the Combat Poverty Research Fund and the Targeted Socio-
Economic Research programme of the European Commission (CT97-3060), the AIM project financed
under the 6th Framework Research Program of the European Commission and the IDARI project
financed under the 5th Framework Research Program of the European Commission. I am very grateful
to the assistance of Donal Kelly who substantially improved the code of this model. I am grateful to
comments provided by Geert Bryon, Jane Falkingham and seminar participants in LSE, Nordic
Microsimulation Workshop Copenhagen, AIM workshop Madrid and colleagues in Teagasc, the DWP
and NUIG. The author is responsible for all remaining errors.

Designing dynamic microsimulation models is a large model building project
involving many disciplines such as economics, social policy, statistics and computer
science. This paper describes a mechanism for making dynamic microsimulation
models easier to construct, using a generalised method. In particular we describe a
number of applications of LIAM.

The paper is designed as follows. Section 2 describes the objectives of the paper, with
section 3 describing the main model features. Section 4 overviews the different types
of process modules, while section 5 discusses alignment. Section 6 discusses some
efficiency features. Section 7 describes some of the implementations of LIAM and
section 8 concludes.

2. Objectives

The construction of a dynamic model is a very large task, both in terms of grasping
the types and forms of behaviour that take place over a lifetime and the effort in
programming 1000's of lines of code.

Despite dynamic microsimulation modelling (DMM) as a science having existed since
the 1970's (see Orcutt et al.), the field has progressed only slightly (See O’Donoghue
2001). Part of the reason has been the resources requirements. When DMM's were
first developed, they were in fact advances in computer science as well as being
advances in social science methodology. Likewise in many countries, data limitations
have prevented the development.

However in recent years, both difficulties have been overcome as computers have
increased in speed and thus allowing for very powerful models to be constructed on
PC's. The establishment of household panel datasets in many countries, for example
the European Community Household Panel Survey, the British Household Panel
Survey and the German Socio-Economic Panel and the increasing availability of
administrative datasets has removed the barrier to the estimation of dynamic
behavioural processes.

However despite these advances, the spread of the DMM technology and the
development of the field has been relatively slow. The models that are being used at
present are not doing very much more than the DYNASIM model in the late 1970’s.
A large potential reason is the apparent benefit to cost ratio. Many institutions when
faced with the large cost of developing a dynamic model felt the money better spent
on other techniques.

One significant contributor to the cost of development is the cost in actually
producing the computing environment of the model. Because the computing
necessary to produce a dynamic microsimulation model is so complicated, computing
development has often taken precedence over developing better behavioural
equations. It is therefore important to focus on ways of reducing the cost of building
this initial framework.

O’Donoghue (2001) surveys the dynamic microsimulation models that have been
constructed, describing in particular the design choices that have been faced. While
most models have been built as stand-alone efforts, a number of attempts have been
made to avoid the start-up costs and learning curve in building the model by utilising

the same framework for alternative applications. There were some efforts in the
1970’s to write actual microsimulation computer software packages. However
because of the complexity of the system to be simulated, users have more specialist
requirements than these software packages allowed.2 Although not designed with
objective of constructing multiple dynamic microsimulation models, the code from
CORSIM model (See Caldwell, 1996) has been stripped down and used as a template
in the construction of the Canadian DYNACAN, Swedish SVERIGE and for the US
Social Security Administration models. There have been four examples of programs
that have been written explicitly for multiple Dynamic microsimulation model
construction, ModGen (Wolfson and Rowe, 1998), UMDBS (Sauerbier, 2002),
GENESIS (Edwards, 2004) and LIAM described here. ModGen is a computer
language designed for create microsimulation models and has been used to create a
number of microsimulation models (dynamic and static) within the Canadian
government such as Lifepaths. MODGEN is an open model while LIAM is a closed
model and the spouses in LIAM come from within the dataset. UMDBS is a
simulation system developed at Darmstadt University as part of academic research. It
is implemented in the object oriented language Smalltalk and its main applications are
socio-economic investigations. GENESIS is a SAS based modelling framework being
used within the UK Department of Work and Pensions to create the Pensim2 pension
age dynamic microsimulation model and the state pension forecasting model. While
LIAM is fully accessible to researchers, GENESIS is an internal government model
currently not accessible to researchers.

In this paper we describe the LIAM framework, which was developed ironically
because of the low resources available to the author. Dynamic models have typically
been constructed by governmental institutions (MOSART, SESIM, DYNACAN,
PENSIM2) or by major research grants (SVERIGE, DYNASIM, POPSIM), although
a number of models have been constructed as part of PhDs (Harding, Baldini). Not
being funded by a major research grant or by a government institution LIAM falls into
the latter “low budget” category, being developed initially as part of a PhD and
latterly expanded with small research grants and with the assistance of a number of
PhD students. As a result, LIAM has necessarily to be less ambitious at the outset.
However despite these shortcomings, it is hoped that with improved data and funding
availability that LIAM can be improved in the future. Therefore the objective of
LIAM is to construct a program which although relatively basic initially is not
constrained from adapted for future uses, essentially has been future proofed to allow
for future enhancements.

While the initial application of LIAM was to develop a single cohort analysis of life-
course the redistributive impact of the Irish Tax-Benefit system using relatively
unsophisticated data and behavioural equations a number of subsequent developments
(described in more detail below) have occurred such as improved data (2-8 years in
the panel data underlying the behavioural estimations), the addition of a graphical
user interface, the move to a multi-cohort population model, international
comparisons and the use for alternative policy analyses such as spatial and indirect
taxation. Future developments that are planned include improving the behavioural
equations to respond to changes in the policy environment such as labour supply
retirement and migration.

2 See Leombruni and Richiardi, 2005 (2005) for the development of a model using Agent Based
Modelling

It is not possible to foresee the problems involved in developments in these areas in
advance. However in order not to allow current limitations to inhibit future
developments of the program, careful thought is necessary in the design of a flexible
modelling framework. There are a number of features that would be desirable in such
a framework to be able to meet these objectives in the future.

• In order to be able to deal with new datasets with ease, using different sets of
variables should not be a problem.

• It should be easy to incorporate new behavioural information in the framework.

• Need to be able to run on a personal computer using standard “inexpensive”
software.

• It should be straightforward to make changes to model using the framework
even if the model has not been used for a period of time or is to be used by
multiple analysts. This implies transparency in the operation of the framework
and also flexibility in the way in which behaviour can be incorporated in the
model.

• These points also imply that the framework should be robust to changes desired.

• Speed may not be considered a priority initially, but despite computing time
decreasing with the availability of cheaper and faster computers, demand has
increased at a faster rate. Efficiency improvement is discussed below.

• The objective of this modelling framework is to allow the user to focus more on
the estimation of behavioural equations rather than computing issues.

• The modelling framework should also allow feedback effects of policy reforms
to be examined.

3. Framework Features

In this section we describe the main aspects of LIAM, focusing initially on the general
structure of the framework and then elaborating the data structure and issues relating
to modularisation and parameterisation.

Structure of Framework

A dynamic microsimulation model is essentially a model that takes individual objects
(individuals, households, farms, companies) and simulates the probabilities of various
events occurring at various points in time.3 Figure 1 describes the main operations of
the ageing component of dynamic microsimulation model. Here the operation of one
particular ageing module at one point in time is examined. In the model itself, this
process would occur on a number of occasions as all the individuals in the database
would pass through many ageing modules at each point in time.

3 Dynamic events may of course occur at the same point in time as other events

Data for each person are firstly taken from the database having been transformed into
the model data-structure, which is described in more detail below. The individual is
then passed through each ageing module in turn. The ageing modules to be used are
specified as part of a parameter list, which allows the order and the types of the
transition processes to be varied. Input parameters for each ageing module are stored
in Microsoft EXCEL spreadsheets (XL) and are accessible by the front end. Output
from each ageing module is stored in alignment storage matrices in memory. For
example, alignment regressions produce a deterministic component XB to which is
added a stochastic componentε . These are stored in a dynamic data structure and
ranked with the highest Z percent of values taken from the exogenous totals in the
alignment process. If the ageing module is a transition between states, then the output
will be a probability, otherwise if the ageing module is a transition between
continuous amounts like for example incomes, the output is a real variable. When all
individuals have been passed through the particular ageing module, alignment occurs
(see section 5 below for a description). This ensures that aggregates from the micro
model match macro aggregates. Finally if a variable for any individual changes then
this change is registered in the database4. The rest of the paper will describe in more
detail the operations of each of the components described here.

Data and Framework Data Structure

In this section we describe how data is handled in LIAM. We describe the database
used, how data is stored within the framework, the data structure. The data structure
or format of the data is very important as it determines to a large extent the amount of
memory required to store the data, which in turn influences the speed at which the
model can run. It also has important consequences for the flexibility of the model.

Turning first to data storage, we adopt a relational database structure due to
organisation and memory handling advantages. Input data and outputted data is stored
in ASCII format.

Figure 2 describes the data-structure used by LIAM. Structurally the data is stored in
a hierarchy of object types (tobjt) such as person, household, firm etc.5 Each of these
object types themselves consists of a number of objects (tobj) such as the actual
incidence of a person or household. Events (tvar1) such as births, tenure status or
identification number then occur to objects. Each event can have a number of
incidences or values (tval).

We exploit the hierarchical nature of relational databases making data storage event
driven. Storing model output as consecutive cross-sections would result in severe
inefficiencies, as each variable would be stored for each output period, so for example
the gender would be stored for each point in time. Making data storage event driven,
new data is stored only when a new event occurs and thus the data changes. Gender is
therefore only stored at birth. One can make significant savings in memory as a result.
Each individual variable however requires more information than in the case of the

4 Note by the term database, we refer to both the physical relational database, stored on the hard disk in
ASCII and the virtual database we create in memory.
5 In cross-sectional data structures, persons are considered at a sub-level to households. However
because persons can be members of a number of different households over time, this relationship
breaks down. In the data-structure persons are considered one set of objects and households another,
where the ID’s of the member individuals of a household are events that can occur to households.

cross-section data structure. For each event it is necessary to know what event
occurred (tvar1), when it occurred (tval.evtime), and the value of the event
(tval.amount).6

There are a number of ways in which data can be stored within LIAM itself during the
simulation. If the model were open as in the case of the DEMOGEN or LifePaths
models in Canada where new spouses are generated synthetically when needed, then
all of each individual's transitions could be simulated independently of other
individuals. Thus each individual could be read from the database, simulate their life
course and store in the database one at a time. LIAM however uses a closed
methodology where individual behaviour can be dependent on the characteristics and
behaviour of other members of the sample. Alignment is an example, whereby the
employment of an individual is not independent of the rest of the population, but
depends upon the interaction of the market. Utilising a closed model means that
except for new births or immigrants, no new individuals are generated. Marriages for
example link individuals already in the database. This method is more straightforward
to interpret as it mirrors the actual population. The model is not solely individual
based (it is a multilevel model – Regions, Counties, Districts, Households and Person)
as many operations in the model depend on other individuals such as the marriage
market, processes which depend on spousal information and alignment routines (see
below for a description). A side effect of this is that it is necessary to store all
individuals in memory during the simulation. The virtual database stored in memory
during the operation of the program mimics the structure of the relational database
stored on the hard disk.

Once the data has been read from the database into memory, LIAM runs through each
object type (person, family etc.) in turn simulating the life course events desired for
each object of that type. Simulation processes are therefore object type specific.

Typically variables which are components of the household data structure are
declared in long lists within a dynamic model. They may be initialised elsewhere and
have other operations carried out in other parts of the program. As the modelling
framework is so large and complicated, it may be difficult to keep track of all the
places in LIAM which need to be altered when a new variable is included. Therefore,
in order to keep the framework flexible and yet maintain the robustness, it is desirable
that the number of alterations necessary is kept to a minimum. As a result instead of
declaring variables within LIAM, we declare the list of variables to be used separately
in a parameter sheet (dyvardesc).LIAM then creates space for the variable, initialises
the data and carries out all necessary transformations and operations automatically
and therefore is entirely flexible with regard to the set of variables used within the
framework. Thus if the user wishes to introduce a new instrument with an output
variable such as health status, then the user simply needs to introduce the variable into
the parameter sheet and LIAM will do the necessary steps, without having to recode
the framework. Another advantage of the flexible declaration of variables described is
that because variables are stored in vectors, new composite variables can be produced
easily. For example, a complex variable like disposable income which is not
simulated directly can be generated from the vector of its components such as
employment income and capital income.

6 Another means of reduce storage space is to store variables as integers rather than as real numbers.
Therefore when storing output, variables are first multiplied by 100 and then truncated.

Another important advantage of the hierarchical method of data storage is the ease in
which duration information can be accessed. As the date and value of each event is
stored it is possible to determine such information as duration, duration in the last 12
months, date an event first occurred, date an event ended, duration in a particular state
and so on. Information of this kind is frequently required by tax-benefit systems and
other policy analysis. Additionally it is easy to access previous values of an event
such as previous earnings etc.

Population versus Cohort

The initial database depends on the purpose of the simulation. One of the key
differences in the literature is the distinction between longitudinal or single cohort
models and population or cross-section/multi-cohort models. However, this
distinction is now largely redundant due to advances in computing power. From a
computing perspective, a cohort can simply be seen as an initial sample of unrelated
individuals aged 0, while the population contains a sample of individuals of different
ages, some of whom are related. As a result, a decision about this does not have to be
made about this, as the computing framework has been developed to handle both
types of analysis. Running LIAM as a dynamic population model requires that the
initial cross-section is stored in the required manner, while running the model as a
dynamic cohort model requires the model to first generate an initial cohort.

Modularisation

The use of modularisation is an important technique that helps achieve the objectives
of flexibility, transparency and robustness that LIAM requires. Modularisation means
that components within the LIAM are designed to be as autonomous as possible.
Modules are the components where calculations take place, each with its own
parameters, variable definitions and self contained structure with fixed inputs and
outputs. The result is a set of independent components that do not interact with each
other directly, allowing the framework to operate as a collection of independent
building blocks. Because each process module is entirely self contained, each can be
run independently, left out or new modules included. Constructing a program in this
way allows for the model to be easily expanded to deal with new behavioural
equations or functions. Also because it allows the user to focus on individual
components one at a time, without interaction with the rest of the program, the model
becomes more robust.

Linkages
Many policy instruments depend upon multiple units of analysis. So for example,
pensions may depend upon individual characteristics such as contribution histories,
age etc., taxation may depend upon family characteristics such as both spouse’s
incomes and social protection instruments and welfare measures on the household
unit. Similarly sociological analyses and long-term care analysis may depend upon
wider kinship networks. These linkages are not strictly hierarchical (e.g. region,
household, family, individual), they may in fact consist of a web of linkages (e.g.
region, firm, household, family, individual, mother, father, partner, children etc.). This
multi-level structure with its complex interactions between levels is one of the main
complications of microsimulation models that make it difficult to use person-based
modelling frameworks. While it is not infeasible to simulate using non-hierarchical
linkages such as those between relatives across households using other software

packages such as social simulation and statistical packages, the non-hierarchical
structure often requires one to be "creative" in designing the model due to
inflexibilities in the model as they are often non-standard requirements. However
specially designed microsimulation packages such as LIAM can have these data
structures in-built improving the transparency and flexibility of the modelling
environment.

In the LIAM framework, the mechanism of linking objects has been automated as a
relational database. Potentially any object can be linked to an object of either the same
or different object type. For example individuals of object type person (p) will be
linked to their household of object type (h), while in turn the household is linked with
the individuals in the household. So therefore to create the number of persons in a
household, this process is carried out at the household level. This new household level
variable npers can be accessed by individual processes using the prefix h_npers.
Similarly we can have linkages between objects of the same type, accessing a
mother’s information, say education level using m_edlevel or father’s f_edlevel.7

In the initial framework, there are no predefined linkages as the objects can be of any
type defined by the user. The user pre-defines all linkages using the parameterisation
described below to essentially create a web of linkages between objects; essentially
defining keys to link tables. As long as the nature of the linkage is defined, it is then
possible at any level of the model to access information from another level. This is
quite a powerful feature of the data-structure, saving both time and memory. In the
absence of these linkages, a h_npers, a new process would have to be simulated which
would store this variable as a person level variable p_hnpers (say), which is analgous
to a flat file, where household level variables are stored at the person level. The use of
linkages or keys provides the space saving advantages of a relational database and
avoids the simulation of an extra process to convert the household variable to the
person level.

New Objects and Killing Objects

While creating a new object (person, family, household, enterprise) is itself not a very
complicated task, creating space and assigning initial default values, creating a new
object to mimic the birth of a new person is rather more complicated. As a result we
have had to develop a specific as opposed to generic new_birth function. The
assignment of variable values such as single, age zero, no education etc is
straightforward. However it is also desirable that the new child inherits the linkages of
the parent. So for example the partner (if any) of the mother at birth becomes the
father, similarly the children of the mother become siblings and the hierarchical
linkages such as household, family, region etc of the mother are also inherited by the
child.

Analogously, “killing” a person is also more difficult that killing an object. The
individual needs to be extracted from the web of kinship networks and other linkages
of which they form part. Similarly the process is not independent of the characteristics
of other objects. The number of persons in a household decreases by one, the spouse
becomes a widow. Bequest of accumulated wealth may need to be transferred and in
the case of pensions systems, contributions or entitlements may need to be transferred

7 Prefixes are defined by the user.

to surviving dependants. Again the possible complexity of the operation is far too
difficult to generalise and so again a specific routine has been required

Migration

Migration is another complex operation. From the point of view of LIAM, emigration
is analogous to killing someone as in a national model, we do not track individuals
while they are abroad.8 A variation of the pageant algorithm (See Chénard, 2000) is
used to ensure that the migration of family units results in national individual level
aggregates being achieved.

Immigration however is a more difficult situation. An immigrant differs from a new
birth in that they have an accumulated set of characteristics and potentially is
accompanied by other family members. One solution is to simulate the range of
characteristics of new immigrants on arrival. However the range of characteristics is
very broad and variable and so it would be very difficult to retain the correct multi-
dimensional distribution of characteristics. To avoid this problem we sample (with
replacement) from a set of immigrant households in the data. Thus whenever we need
an immigrant household we simply select a “real” (data-dependent) family with actual
characteristics of a new immigrant family. In addition to preserving the multi-
dimensional distribution, it saves substantial computing time in having to simulate all
the individual characteristics.

Parameterisation

In order that modules and other components of LIAM can be changed with ease, it is
necessary to store model parameters externally. So where possible no parameters are
hard coded within the framework. Figure 3 details the set of parameters used by the
modelling framework. The sets of parameters, representing the flow of control in the
model, are in some sense hierarchical.

At the top level we have dyrunset parameters which contain the parameters necessary
to run the model, detailing directories (location of input and output files), time period
to be run etc. Figure 3 is divided in two by dashed lines indicating sets of parameters
dealing with the data structure and sets of parameters dealing with the simulation
process.

On the data side the highest level parameters are contained in objtype. This file tells
the model how many object types there are (region, household, person etc.). LIAM
creates each object type based upon the list defined here and assigns defined prefixes
(r,h,p etc.). The framework then looks for files objtype_x containing the incidences of
each of the object types (r, h, p, etc.) which in turn contains in the identification
numbers or id’s of each object of that particular object type. So objtype_p would
contain the set of id’s of all persons.

Related to the set of object types is a set of variables associated with each type in the
dyvardesc file.9 In this file, all variables used in LIAM are declared and described. It

8 Technically as pension rights can be accumulated overseas, one may need to simulate their life-
histories while overseas, but this has been beyond the capacity of any existing model.
9 In the front end, the parameter files have equivalent menus.

is in essence a data dictionary for the model. This file contains information on the
following attributes of each variable:

• variable name

• variable type (binary, multi-category, continuous)

• an income variable (monetary amount that can be added to other monetary
amounts, for example it prevents adding gender to employment)

• limits of the variable (upper and lower bounds) for debugging and validation

• a categorical variables (if so how many categories and the list of categories – for
tabulation purposes),

• is to be updated during the simulation (to account for inflation)

• default values to be taken by new persons

• data description (describes variable names)

Associated with each variable, there is a data table containing information about
object associated with the variable (who), the time the event occurred (when) and the
value of the variable (what).

While each data table within an object type is linked by the key or object ID, we need
further information to link objects of the same or other type. The linkage parameters
define the set of possible links between objects. The user needs to define a name for
the linkage (ph – person to household, hp – household to person etc.) and equivalent
origin (p for link ph) and destination (h for link ph) types. These linkages between
objects are stored in the linkage file link_xy. Subsequently, for each linkage listed in
link_xy, LIAM pairs the relevant origin objects (e.g. children) and destination objects
(e.g. parents) and stores the resulting origin and destination IDs in a link-specific (e.g.
pc) file.

We now consider the set of parameters that define the simulation processes. The
highest level is the agespine or process spine/list. In any simulation there is an
implicit ordering, and events are triggered through conditions. The process spine
contains the list of modules to be run in the dynamic model, so that by varying the
order of the modules and varying the content of the list, one can vary the types of
processes that can be run in the model. This feature exploits the modularisation,
where because each process is seen as a separate building block, the number, type and
order of processes can vary without having to change the code. Each process or
module has a corresponding parameter sheet in the parameter file “Transitions”.
These parameter files tell the model the output variables of each process, what type of
process (described in the next section), whether a process needs to be aligned and the
actual process parameters themselves such as the transition rates, regression equation
and policy rules etc. If a particular process is to be aligned, then LIAM will look for
an appropriate set of alignment parameters. Sometimes individual parameters may be
required to be changed between runs without any change to the set of processes. A
reform to a pension simulation module where the replacement rate was changed is an

example. The polparam parameter set contains information associated with each
parameter for each possible “system”, where the system to be run is defined in the
dyrunset parameters.

4. Process Modules

This section describes the main process types that can be used by LIAM. This refers
to the collection of operations that are simulated on objects during a simulation. These
include demographic processes such as birth, marriage, having children and death,
education, labour market processes such as employment and unemployment, the
simulation of incomes and interactions with the tax-benefit system.

In order to aid flexibility, we classify processes under a number of headings. In this
way, instead of programming each module separately, we only need to program the
module type once. In order to run a module, we then only need a module name (which
is included in the process spine), a module type to determine which program to run
and a set of parameters which is fixed for every process type. At present there are 6
module types:

• transition matrices, in the form of a log linear model (trap)

• transformations (tran)

• regressions, both with continuous and limited dependent variable (regr)

• macro alignment (discussed in section 5) (macro)

• marriage market (mmkt)

• tax-benefit system10 (tb)

The first component of a parameter file contains details about what conditions need to
hold for the process to be run. At each point in time, each individual is passed through
the module. If the conditions hold, then the module calculations are carried out and
the output passed to the alignment component of the module. The output for each
individual is stored until all individuals have passed through the module. The
alignment component then ensures that the aggregates correspond with external
control totals.

Transition Matrices

One of the most important processes in a dynamic model is the transition between
different discrete states. Transition Matrices are often used to perform these
operations. They specify the probability for an individual of particular circumstances
to move from state A to state B. In this framework, transition matrices can be stored
as log-linear models (See Dobson, 1990). In this way transition rates are decomposed
into average and relative transition rates. In this way extra-relative transition rates can

10 The tax-benefit system is in fact a collection of modules. We have linked the dynamic model to the
EUROMOD EU15 tax-benefit model and to other tax-benefit routines.

be added with ease. For example, if a mortality rate on average fell by 0.1% every 10
years, then a relative probability time dependent parameter 0f 0.999 could be added.
Similarly it also allows the model builder to combine information from different
sources. So for example we combine actual age-gender specific mortality rates for
1991 taken from life-tables and use relative mortality rates taken from (Nolan, 1990)
that incorporate socio-economic relative mortality rates.

Regressions

The second type of transition process used are those based upon standard regression
models. At present, this type of module allows four types of dependent variable

• standard continuous dependent variable

• log dependent variable, allowing for use of the log normal distribution.

• logit discrete choice dependent variable

• probit discrete choice dependent variable

Any variable in the model can be used as a dependent variable and any variable can
be used as an explanatory variable. The error term can also vary. The default error
term takes a normal distribution with independent disturbances. LIAM also allows for
the error term to be decomposed into individual specific (un) random effects and
general error components (vnt) (See Pudney 1992). However more complicated error
decompositions are also possible. This allows some degree of heterogeneity to be
assigned specifically to individuals. So for example in determining earnings, the
individual specific error may represent some difference in innate ability, while the
general error term represents random variation over time. Breaking up the variation in
this manner will tend to reduce within lifetime variation and prevent to some degree
the existence of very unusual life paths.

In this framework, transitions occur at discrete time intervals because of the weakness
of the data and because of the desire to be able to align the data.11 As Galler (1997)
points out some statistical difficulties relating to the use of discrete time models, it is
desirable to use short term discrete time periods such as a month. As the computing
requirements can be substantial for monthly simulations, LIAM is sufficiently flexible
to allow the user as the ability to specify the time period to be used and so monthly or
annual periods can be simulated.

Transformations

While regression models and transition matrices are stochastic processes, involving a
random component, some processes are deterministic. Examples include age, which
depends on the date of birth, widowhood, which depends on the death of a spouse and
so on. Likewise if an individual moves from year 6 in education to year 7, years of

11 O’Donoghue (2001) describes some of the advantages and disadvantages of continuous time versus
discrete time.

education increase by 1. This component has also been parameterised as
transformations.

Within the transformations there are two types of deterministic transformation gen
and fgen. The gen functions are of simpler types, utilising a calculation routines
combining sets of variables using standard operations.12 The fgen set of functions is
where we program ad-hoc programs. It is where we for example we exploit the
relational database structure of the data in operations such as the number of persons in
a household, where the function counts the number of objects of type person linked to
the object household as defined by the link_hp link file. Similarly it is where ad-hoc
functions such as new_birth and killperson are defined. While gen functions and
predefined fgen functions are pre-coded and parameterised so that new users can
employ them, new fgen functions such as the pension system of a new country need to
be programmed by the user if the existing functionality does not allow it.

Marriage Market

If an individual is selected to marry or form a partnership then, a process is needed to
determine which spouse they will take. The process used here is to take the
characteristics of the individual chosen to marry and the characteristics of each
possible spouse and determine the likelihood of a match. Similar to the method used
in other models such as the CORSIM model, this is done using a logit model that
estimates the probability of marriage between pairs of individuals. The parameter file
therefore is identical to that used in the regression process type. The module itself
forms a matrix of the characteristics of the n men and n women selected to marry.
Estimates a probability for each pair and assigns a match to the couples with the
highest probability of marrying.

Bouffard et al (2001) has identified some problematical issues associated with the
marriage market, in particular with strange matches occurring amongst the last people
to be married in a particular simulation. In order to avoid these issues, we allow the
user to create a super-set of potential male partners, so that rather the last female in
the marriage pool to be select an unlikely match, there are a number of males to
choose from. In addition we employ the Order of Decreasing Differences algorithm of
Howard Redway at the DWP, which creates a measure of the distance of an individual
from the centre of the population (or the average characteristic of the population) and
selects the females with the most unusual characteristics, who are likely to be the
most difficult to match, to be matched first. The logic is that those in the centre of the
data “average people” are more likely to find a good match than someone at the
extremes.

Policy Processes

The fourth process type is the simulation of the tax-benefit system. Here we describe
how it is implemented in the program. Again, to re-emphasise the desire to reuse code
wherever possible and to avoid duplication, the dynamic framework is flexible
enough to link with other specialist programs such as tax-benefit models. Tax-benefit
routines from other models such as EUROMOD can be seamlessly accessed by this
model and thus can be used as module components of the dynamic model.

12 {+,-,*,/, max,min,^,(,)}

Behavioural Response

A desirable feature often ignored in dynamic microsimulation models is the ability to
include feedback loops so that behaviour can respond to changes in public policy.
This is a criticism made by PRIM (1997), is that dynamic models are insufficiently
flexible to incorporate the demands of behavioural response. In order to be able to
simulate behaviour, typically the model needs to be able to call a policy simulation
routine a number of times to quantify the financial impact of alternative choices on
the decision in questions such as the choice to work or retire etc. In O’Donoghue
(2000) we implemented a simple labour supply model where labour supply depend on
tax-benefit policy, the tax-benefit system. The software framework has been designed
to be able to incorporate feedback loops. The degree of modularisation that exists in
the framework allows any number or order of modules to be run and for modules to
be able to be run a number of times.

Thus for example in order to have labour supply depend on tax-benefit policy, the tax-
benefit system will need to be run once as an input into the labour supply module and
again once labour supply has been determined, taxes and benefits need to be
calculated again on the resulting behavioural decision. In O’Donoghue (2000), the
model used the tax-benefit system as an input into decisions to work, decisions to
seek part-time employment versus full-time employment and to become self-
employed. The tax-benefit system therefore needed to be run 5 times to examine the
impact of the system on the choice faced by an individual. When there are more that 1
adult in the household, because behaviour of spouses can depend on each other, the
tax-benefit system needs to be simulated 17 times (4 decisions for each, plus one run
on the basis of resulting behaviour). As a result incorporating behavioural response
can be computationally expensive.

Other possible behavioural routines that could be included are retirement decisions,
consumption and benefit take-up. Although computationally expensive, the
framework is sufficiently flexible should the user require and the computing power
becomes available.

Robustness

Finally in order to avoid robustness problems due to modules being incorrectly
specified, the model contains a debug device which ensures that all inputs required by
a module are actually available (i.e. have either been generated in the model or read
from the database) before each module can be run.

5. Alignment

The section describes the alignment function contained in LIAM. The objective of
alignment is to ensure that output aggregates match external control totals. The reason
this is done is that micro behaviour (both social and economic) is extremely complex
and micro-theory being limited, cannot predict accurately all the variability of the
system (in this case the life paths of individuals). In addition, a household model only
makes forecasts about a small part of the economy and largely ignores interactions
with the rest of the world economy. Also, data taken from relatively short periods of
time may not fully reflect the dynamics within the household sector over time. As a

result dynamic micro-models may not be able forecast aggregate characteristics of the
population well.

In the discrete choice models, the output for each individual is a probability. In order
to use these models for predictive purposes, a decision rule is necessary. In other
words, what forecasted probability or higher will produce an event. In order to predict
a state with a logit (or probit model), one draws a random number uniformly
distributed number iu . When)(i

-1
i Xlogitu βα +< (or)(i

-1
i Xrobitpu βα +<), then a

state is predicted to occur.

Another use of alignment is in correcting for predictive failures of econometric
models. For example when using discrete choice models such as logit or probit
models, often, the predictive power is poor. Duncan and Weeks, (2000) highlight that
“even in functionally well-specified models, the predictive performance is poor,
particularly where some states are relatively densely or sparsely represented in the
data”.13 Thus the further the probability of an event occurring is from 0.5, the less
effective these decision rules are at producing the desired result. As a result models
may under or over predict the number of events. So for example if 5% of individuals
of individuals should have the event, then the logit model may not necessarily
produce 5% of events. Alignment will however constrain the event to occur to 5% of
individuals. This is effectively a calibration mechanism and will produce the correct
proportion of events. Care must be however taken in its use as it may disguise errors
in the model specification.

The types of control totals that would be used to align to include:

• The aggregate proportion/number in a state or moving between states.

• The average event value.

• The distribution of values.

• The average growth rate in the value of an event.

In this paper we shall deal specifically with the first type

A simple analogy about the relationship between alignment and the process modules
is that the process modules such as logit models produce a ranking variable, while the
alignment mechanism selects the number of transitions. For example, in our
econometric model we may have an equation of the probability of dying as described
in equation (1), that depends on age, gender and whether an individual is disabled or
not. Assuming that disabled people have a higher mortality rate, then given the same
age and gender and distribution, as expressed by the stochastic componentiε , the

mortality distribution for disabled people will be higher.

=)(iplogistic

iiii

ii

AgeDisabledGender

AgeDisabled

εββ
ββα

+××+×
+×+×+

43

21 (1)

13 The reason for this according to Greene (1997) is that “the maximum likelihood estimator is not
chosen to maximise a fitting criterion based on prediction of y, as it is in the classical regression (which
maximises R2). It is chosen to maximise the joint density of the observed dependent variable.

The deterministic component of the model will result in those with a higher risk,
having a better chance of the event occurring, while the stochastic part will ensure
that there is some variability (so that not only those with high risk are selected). This
model therefore produces the risk of dying.

In order to select the number of people that die, we use the alignment probabilities.
Firstly individuals are grouped into the appropriate age and gender groups. As
everyone in the relevant group will have the same age, gender and occupation, they
only differ by the deterministic component for disabled people

iii AgeDisabledDisabled ××+× 41 ββ and the stochastic componentiε . The object then

is to select to die, the people in the group with the highest probabilities of dying. As

1β is positive, proportionally more disabled will die than non-disabled. As a result we
see that the output of the model equation is used to rank the individuals to whom the
event occurs, but to leave the decision to the alignment process.

Implementation

In this section we describe a practical method for ranking individuals for alignment.
We take as our reference point a logistic model:

)(ii
-1

i Xlogitp εβα ++= (2)

Utilising the model ii Xplogistic βα +=)*(will result in those with the highest risk

always being selected for the event. So for example in our example given above, the
disabled, all other things being equal would be selected to have a die. In reality those
with the highest risk will on average be selected more than those with lower risk,
rather than simply selected those with the highest risk. As a result some variability
needs to be introduced.

Models based on the CORSIM framework such as the DYNACAN model (See
Chénard, 2000) utilise the following method. Firstly, predicted probability is
produced using our econometric model:)(i

-1
i Xlogit*p βα += . Next, a random

number iu , is drawn taken from a uniform distribution, is subtracted from the

predicted probability, i*p , to produce a ranking variable, iii u*pr −= . This value is

then used to rank individuals so that the top x% of values are selected.

A concern about this method is that the range of possible ranking values is not the
same for each point. In other words, because the random number]1,0[∈iu is

subtracted from the deterministically predicted, i*p , then the ranking value takes the

range]1,1[−∈ir . However the ranking value for each individual will only take a

possible range],1[iii uur −∈ . So for example if i*p is small say = 0.1, the range of

possible ranking values is [-0.9, 0.1]. At the other extreme if i*p is large say = 0.9,

then the range of possible ranking values is [-0.1, 0.9]. Thus because there is only a
small over lap for these extreme points, even if a very low random variable is
selected, then an individual with a small i*p will have a very low chance of being

selected.

Ideally the range of possible ranking values should be the same, so that for each
individual,],[bari ∈ , with individuals with a low i*p being clustered towards the

bottom and those with a high i*p being clustered towards the top.

We now consider an alternative method. This method takes a predicted logistic
variable: ii Xplogit βα +=)(. Next, a random number is drawn taken from the logistic

distribution iε . This is added to the prediction of the ii Xplogit βα +=)(to produce

iiplogit ε+)(. The resulting inverse logit,)(ii
-1

i Xlogitp εβα ++= is then used to

rank individuals and similarly the top x% of households are selected.

The rank produced by the two methods is not the same. The second method will be
more likely to select cases at extreme points than the first, while first method will
select more points with central values of i*p .

Macro Alignment.

There are a number of levels at which alignment can occur. At the lowest level,
alignment refers to the decision rule used in a discrete choice model. At the next level,
described above in our mortality example, which is called the meso-level, concerns
the idea that the aggregates for particular groups (in this case gender, age and
occupation) should match the external totals. Meso-level alignment and the use of
alignment as a decision rule can however be combined into one stage.

Sometimes the desired targets are narrower than the alignment targets we use. In our
mortality alignment example, we align mortality by age, gender and occupation. We
include occupation in the alignment because the occupational structure is very
important for other characteristics in the model. However if say one of the core targets
in the model is to achieve the mortality distribution supplied by external sources such
as official population projections, which may only be by age and gender, then our
meso-alignment may produce different aggregates. This will happen if our underlying
occupation distribution is different to the one implicit in the official forecasts. It may
therefore be desirable to adjust the results again to achieve these targets. This process
is known as macro alignment. In the application of the framework used in this thesis,
an example of meso alignment is the simulation of transitions between employment
states. Macro alignment is then used to constrain total employment rates. See
Appendix 1 for the steps involved in the macro alignment process.

Behavioural Change.

Handling behavioural interactions in the model resulting from alternative scenarios is
another issue one needs to consider when deciding on an alignment strategy.

One potential solution is to examine the average (pre-alignment) event value such as
the average transition rate or average earnings in the baseline scenario with the
average in the alternative scenario. One potential method is to increase alignment
values by proportional difference. This is a method utilised in some dynamic models.

This however assumes that all processes are unconstrained. This may be the case for
example with the mortality rate. One may expect that an exogenous increase in human
capital will reduce total mortality rates and thus one can shift down in the alignment
totals is appropriate.

Some processes face market or other institutional constraints, issues that are only
partially simulated in the model. An example is in the labour market such as the case
where there is a behavioural change in labour participation in response to a tax
change. If labour supply increases, then wages would fall and employment increase.
This is similar to shifting the alignment probabilities. However one would have to
shift earnings as well. However due to rigidities in the labour market, this may not
necessarily happen. Labour Demand may be fixed, in which cane we may just simply
see that as more women supply labour, they simply replace people in the labour
market who are less “employable”. This is similar to not shifting alignment at all. In
cases where there are market interactions such as this, it may be useful to incorporate
a model of the market that would inform the response of alignment totals to economic
and demographic totals.

At present the framework makes no explicit incorporation of behavioural change in
the alignment structure. Future work on macro-micro linkages will attempt to address
this.

6. Efficiency

In earlier versions of the framework, developments focused on functionality and not
speed. So for each process the model passes through all the objects of the object type,
checks to see if a condition is true and if true, performs the calculation()iXf εβ +

and if necessary uses alignment to produce the predicted value of the process. In this
section we describe a number of efficiency improvements that have been made
recently.

One of the speed advances relies on the fact that most processes are relatively stable
and so do not change much year on year. Because of this, eligibility conditions are
unlikely to change much year on year. For example for lone parent births, the model
used to check to see if an object is a female, single person of child bearing age. It does
this for each year and for every person and was therefore very inefficient. Gender
doesn’t change and so it is inefficient to check to see if a male can have a child,
Marital status only change infrequently and so the condition does not need to be
recalculated each year. Similarly the age range condition only changes twice over the
lifetime. One immediate speed improvement was to calculate the conditions for all
people in the first year of the simulation and only to recalculate the condition if an
input variable to the condition changed.

The same is true when calculating regressions. Most regressions are of the

form ()ii
ji

jij AfXf εεβ +=

+∑

,

 Again by calculating the value of the expression in

the first year, when Xij changes to Xij*, one only needs to apply the following
transformation ()ijjij ij

XXAf εββ ++−+ * .

The same speed efficiencies can be found for transformations, alignment and
tabulations. For example when aligning by age-group, sex and education level or
creating output tables by these components, most of these categories do not change
much if at all during the simulation. It is therefore computationally quite expensive to
identify all say 20-30 year old males with university education each period of the
simulation to perform an alignment. Rather by computing the group membership at
the outset and only change group membership when a characteristic changes, we
reduce significantly the computational costs.

These improvements were applied by creating a data structure that links every
variable to the processes which utilise the variable. When the value of the variable
changes, then the related conditions, regressions, transformations etc are updated.

Moving simulations from periodic to initialisation plus simulation only when inputs
change transfers some of the computing cost from simulation period to the start.
Initialisation becomes a good deal longer as rather than simulating equations where
conditions are met, (e.g. only simulating work equation for those who are in-work the
previous period), we must now simulate all equations (e.g. simulate the equations
conditional on working and conditional on not working in the previous period).
However as no alignment needs to occur at this stage as all that is being calculated is

∑
ji

jijX
,

β , there are significant economies of scale and much less looping through the

data.

As development of the program occurred incrementally and different versions have
been run on different machines and with different specifications, it has been quite
difficult to gauge the impact of the speed improvements. However a conservative
estimate is that the run time is 10% of what it was and potentially as low as 5%. So
the qualitative conclusion is that the gains are highly significant.

A relatively minor speed improvement was to store variables in a static rather than in
a dynamic data structure (i.e. as an array rather than a list). As the set of variables
does not vary within a run of the model, there is no gain to using a dynamic list;
instead a speed penalty is imposed as the list needs to be traversed to find a particular
variable as opposed to simply using the array index to identify the variable.

While attention was paid in the original data-structure to the memory efficiency of the
data-structure by storing only new events, little attention was paid to the space taken
within this structure, which proved very costly. For example all incidences of values
were stored as doubles or real numbers, even though the majority of variables were
binary variables that could be stored as a char. To improve this we introduced a new
category in the data dictionary which specified what type of variable to be used, so
that binary variables only took up a fraction of the space required to store a double.
Also we stored real numbers as integers multiplied by 1000 and categorical variables
as integers, taking half the space of a double. We also conducted an audit of the entire
data-structure stripping out as much superfluous memory requirements as possible.
This has been particularly important allowing for much bigger datasets to be
simulated on a laptop with limited RAM.

Something we have not explored yet is a further speed improvement that could be
found by creating sub-sets of objects associated with each condition. At present, the

model needs to scroll down through the whole dataset for each process. If conditions
are updated dynamically, then the sub-groups where the condition is true can be
updated dynamically, resulting in calculations only taking place on the subset. When
the condition changes then, this updates the set of objects where the condition is true.
Therefore in doing simulations, the model will only simulate over the set of objects
eligible to be simulated.

At present all processes are run in series. In other words each process is completely
simulated before moving on to the next process. This requires a data pass for each
process. This is necessary for processes that are aligned as the decision about who
makes a transition will depend upon all objects and not on individual objects.
However some processes such as transformations and unaligned processes do not
need to be done serially. Efficiencies could be gained by simulating these processes in
parallel. For example if age is simulated for an individual, then age squared and age
band could be calculated using age as input for each individual before continuing on
to the next individual cutting the number of data passes and improving the speed of
the model. Other examples include the calculation of durations and lagged values of
variables.

As always in microsimulation models, there is a trade-off between flexibility,
complexity and performance. Parameterisation may sometimes result in enhanced
complexity and thus reduced transparency and ease of use of the model. In the LIAM
structure, this has been less of an issue as the parameterisation allows for the same
code to be reused over and over without recoding, so to some extent improving the
transparency. There are however some performance overheads noted elsewhere in the
paper, where the degree of parameterisation and generalisation may increase the
number of operations required and thus increase the time to run a simulation.
However this must be weighed up against the complexity of creating a dynamic
model without an existing framework.

7. Implementations of the Framework

In this section we describe a number of implementations of the LIAM framework.
Thus far there have been four implementations of the model

a. Life-cycle redistribution in the Irish Tax-Benefit system - Irish Dynamic Cohort
Microsimulation Model

b. Redistributive impact of Indirect Taxes in Europe – dynamic microsimulation of
expenditures in the EUROMOD framework.

c. Spatial Policy Analyses – Simulation Model of the Irish Local Economy (SMILE)

d. Cross-national comparisons of the distributional impact of pensions and the
incentive to retire – multi-country dynamic microsimulation model – EU 6th
Framework project, Old Age Income Maintenance Policies (AIM).

Model (a) was the basis of the author’s PhD and has been used to examine the life-
course redistributive impact of the Irish Tax-Benefit System (O’Donoghue, 2002) and
the redistributive impact of pension reform (O’Donoghue, 2005). The implementation

was a single cohort model taking 1000 people aged 0 and simulating the entire life-
history and then linking with the EUROMOD tax-benefit model to simulate the tax-
benefit system. A feedback loop was used to incorporate the impact of tax-benefit
policy on labour supply decisions.

While model (a) utilised an external tax-benefit microsimulation model to provide
tax-benefit simulations for use in the dynamic microsimulation model, model (b)
takes inputs from the dynamic microsimulation framework into a static tax-benefit
model. As part of the EU tax-benefit model EUROMOD, there was a desire to
examine the impact of indirect taxation on redistribution (See O’Donoghue et al,
2004). However most of the databases used as input into the model did not contain
expenditure information. The LIAM framework was used to simulate a system of
equations simulating total expenditure and budget shares of 20 groups of goods on the
basis of information contained in the income surveys used in the model. Indirect taxes
were then simulated using the EUROMOD framework. This model used datasets of
up to 50000 households simulating indirect taxes for one fiscal year.

In recent years parallel microsimulation modelling has been used for geographical and
spatial analysis (See Clarke, 1996 and Holm et al, 1996). Since 2002, a team
comprising the University of Leeds, NUI Galway and Teagasc have been developing
a model (c), the Simulation Model of the Irish Local Economy (SMILE) using the
LIAM framework with the principle objective of carrying out spatial analysis in
Ireland (See O’Donoghue et al, 2005). Examples include modelling the impact of
local area demographic changes on welfare, modelling the spatial impact of rural
policy reforms, identifying agri-tourism hotspots and eventually modelling the spatial
behavioural impact of public infrastructure developments such as road building
programs. The first component of the model is developed outside the framework,
requiring the statistical matching of individual tabular local area census information
with micro-level household data to produce the base dataset. This done using a
statistical matching algorithm. The LIAM framework is used to simulate typical
dynamic microsimulation variables such as demographic and labour market variables.
Particular advancements from this model include regional labour markets, micro-farm
level production functions and spatial behavioural models. The model is currently
under development. This model, although divided into around 30 county models of
about 70000 persons each simulates spatial based policy at the local level.

The fourth implementation of LIAM has just begun, where it is being used to carry
out cross-national comparisons of the distributional impact of pensions in a selection
of countries in the EU (Be, Ge, Ir, It and Sw). In addition a comparative analysis will
be carried using a semi-structural retirement decision module based upon discounted
income and pension wealth streams. This model simulates over a 50 year horizon
2000-2050, cross-sections of about 10-15000 individuals.

8. Conclusions

To conclude we have discussed some of the methodological innovations developed by
the LIAM dynamic microsimulation framework. In summary some of the main issues
are summarised in the following paragraphs.

Parameterisation has been used extensively throughout the model. This aids flexibility
as code does not need to be reprogrammed when parameters change. This in turn
improves the durability of the model as it allows new parameters to be included when
better information becomes available.

Defining the data structure outside the model improves the transparency and the
robustness of the model. When adding new variables to the model, alterations need
only to be made in one place, in a parameter file. It therefore reduces the possibility of
error and makes the model easier to change.

Using modularisation, all modules work independently of others which means that
new modules can be added without affecting the integrity of the model. It therefore
adds to the robustness of the model. Also, by allowing the user to focus on small
sections of code at time, improves the transparency of the model.

Generalisation of main features of the dynamic model allows for the code which runs
transitions, alignment and transformations to be reused for different purposes. Taking
these as templates, one can declare a new module in the parameterisation of an
existing type and simply change the parameters in order to produce a new process
module. Also because the number order and type of module is parameterised, the
model can handle any number of modules of each type and in any order without any
need for extra programming. This is perhaps the most important feature of the model
as it allows the model to be used for a wide variety of purposes. It thus allows for ease
of expansion as improved data and micro-behaviour become available. Allow this not
an attempt at writing a microsimulation programming language, it has allowed for a
variety of different applications to be constructed without the need for extensive
recoding. In addition it has been possible to use this framework as a template for other
dynamic models because the model itself is entirely independent of data and
behavioural equations to be used.

Lastly we have described a range of efficiency improvements in both speed and
memory usage in developing the framework. While there have been substantial
numbers of papers describing analyses carried out by these models, relatively little
has been written on the technical development of the models. We do not claim to be
the fastest or most efficient dynamic model; however we have attempted to document
some of the issues that have arisen in the creation of this framework, so that hopefully
other model builders can learn from the development process of others. To promote
collaboration and further development, this model is available on request to
researchers.

References

Atkinson, A.B. and J. Micklewright, 1985, Unemployment benefits and unemployment
duration, STICERD Occasional Paper, No. 5, London: London School of Economics.

O’Donoghue, C., M., Baldini, and D. Mantovani, 2004, “Modelling the Redistributive
Impact of Indirect Taxes in Europe: An Application of EUROMOD” EUROMOD
Working Paper no. 7/01.

Bouffard, N., R. Easther, T. Johnson, R.J. Morrison, J Vink, 2001 “Matchmaker,
Matchmaker, Make Me a Match” Brazilian Electronic Journal of Economics.

Caldwell S.B., 1996, “Health, Wealth, Pensions and Life Paths: The CORSIM
Dynamic Microsimulation Model”, in Harding A. (ed.) Microsimulation and Public
Policy, Amsterdam: Elsevier.

Chénard D. 2000. “Individual alignment and group processing: an application to
migration processes in DYNACAN”, in Mitton et al. (eds.) Microsimulation in the
New Millennium, Cambridge: Cambridge University Press.

Clarke, G. P. (1996) (ed.), Microsimulation for Urban and Regional Policy Analysis,
Pion

Dobson A., 1990. Generalised Linear Models. London: Chapman and Hall.

Duncan A. and M. Weeks, 2000. Simulating Transitions Using Discrete Choice
Models, in Mitton, L., H. Sutherland and M. Weeks (eds.), Microsimulation
Modelling for Policy Analysis: Challenges and Innovations. Cambridge: Cambridge
University Press.

Edwards S., 2004. GENESIS: SAS based computing environment for dynamic
microsimulation models. Mimeo, Department of Work and Pensions, London.

Galler H., 1997. Discrete-time and Continuous-time Approaches to Dynamic
Microsimulation Reconsidered'- NATSEM Technical Paper No. 13, -October.
Canberra: National Centre for Social and Economic Modelling, University of
Canberra, Australia.

Holm E, Lindgren U, Makila K, Malmberg G (1996), Simulating an entire nation, in
G.P. Clarke (ed.), Microsimulation for Urban and Regional Policy Analysis, Pion,
London, 164-186

Immervoll, H. and C. O'Donoghue, 2001, 'Towards a Multi-Purpose Framework for
Tax-Benefit Microsimulation: A Discussion by Reference to EUROMOD, a European
Tax-Benefit Model’, EUROMOD Working Paper, EM2/01, Department of Applied
Economics, University of Cambridge.

Leombruni, R. and M. Richiardi, 2005. An agent-based microsimulation of labour
force participation. Some results for Italy, mimeo, LABORatorio R. Revelli, University
of Turin.

Nolan B. 1990, “Inequity in the Financing and Delivery of Health Care in Ireland”,
ESRI Working Paper 16, Economic and Social Research Institute, Dublin.

O’Donoghue C. 2001, “Dynamic Microsimulation: A Survey”, Brazilian Electronic
Journal of Economics.

O’Donoghue C., 2002, “Redistribution over the Lifetime in the Irish Tax-Benefit
System: An Application of a Prototype Dynamic Microsimulation Model for Ireland”,
Economic and Social Review, Vol. 32, No. 3.

O’Donoghue C., D. Ballas, G. Clarke and J. Lennon, 2005. “Location Choice
Decisions in Ireland”, paper presented to the conference Modelling Urban Social
Demographics, University of Surrey, Guildford, March.

O’Donoghue C., 2005. “Assessing the Impact of Pensions Policy Reform in Ireland:
the Case of Increasing the Pension Age” in E. Fornero and P. Sestito (eds.) Pension
Systems: Beyond Mandatory Retirement. Cheltenham: Edward Elgar.

Orcutt G., J. Merz and H. Quinke, 1986. Microanalytic Simulation Models to Support
Social and Financial Policy, Amsterdam: North-Holland.

PRIM 1997. Assessing Policies for Retirement Income: Needs for Data, Research,
and Models. Washington DC: National Research Council.

Pudney S.E., 1992. “Dynamic Simulation of Pensioner’s incomes: methodological
issues and a model design for Great Britain.”, Dept. of Applied Economics Discussion
paper no MSPMU 9201, University of Cambridge.

Sauerbier Thomas, 2002, UMDBS - A New Tool for Dynamic Microsimulation.
Journal of Artificial Societies and Social Simulation vol. 5, no. 2.

Wolfson M. and G. Rowe, 1998. “LifePaths – Toward an Integrated Microanalytic
Framework for Socio-Economic Statistics”, paper presented to the 26th General
Conference of the International Association for Research in Income and Wealth,
Cambridge, UK.

Appendix 1.

In LIAM, macro alignment occurs by specifying:

1. Alignment Sheets need to be the same shape for each process (but macro can be a
subset), as does the predictor

2. Create Temporary Set of Alignment Structures of type talign (= n+1, where n is the
number of processes to be macro aligned - structure (0) is to store the macro level)

3. For each sub process, run through conditions and count the number of people
(level.nPer) who meet conditions who are in each alignment cell (we don't store
predicted probability at this point as we don't know it - maybe simply assign zero and
use the existing code)

4. For macro process, do the same

5. Multiply the cell p times the number in cell N = np, the number to be selected in
cell

6. If the sub-processes are more disaggregated than the macro level, collapse to the
lower level by summing N over the higher level (ie across education levels)

7. Now we have the N's for the 2 dimensional table for macro and each sub-process.
Sum over sub-processes to get expected overall N_t and compare with the Macro
N_m

8. To adjust multiply the highest level of the macro sheet (in this case level 2) In each
of the sub-process by N_m/N_t

9. Backup original Alignment numbers (to be used in the following year)

10. Store new Alignment totals in the sub-process alignment structures.

Figures

Figure 1. Description of a Dynamic Module

Model
Data
Structure

If Xt ≠≠≠≠ Xt-1
(Store only changes

in Data Base)Changes

Person(j),
Time(t)

Data Base

Alignment
Storage
(stores all

individuals)
Ageing
Module

Once all
individuals
passed through
ageing module
do alignment

Alignment
(ensures model

aggregates match
macro aggregates)

Repeat Loop for each Process in each Time Period

Person(j),
Time(t)

Person(j),
Time(t)

Parameter
(XL)

Figure 2. Model Data Structure

• The data is stored in a hierarchy of object types (tobjt) such as person, household,

firm etc.

• Each of these object types themselves consists of a number of objects (tobj) such
as the actual incidence of a person or household.

• Events (tvar1) such as births, tenure status or identification number then occur to
objects.

• Each event can have a number of incidences or values (tval).

• For each event it is necessary to know what event occurred (tvar1), when it
occurred (tval.evtime), and the value of the event (tval.amount)

tobjt
tobj *obj
tobjt *next_ptr

tobj
tvar1 *st_var
tobj *next_ptr

tobj
tvar1 *st_var
tobj *next_ptr

tobj
tvar1 *st_var
tobj *next_ptr

tvar1
tval *st_val
tvar1 *next_ptr

tvar1
tval *st_val
tvar1 *next_ptr

tval
int evtime
double amount,
 tval *next_ptr

tvar1
tval *st_val
tvar1 *next_ptr

tvar1
tval *st_val
tvar1 *next_ptr

tval
int evtime
double amount,
 tval *next_ptr

tval
int evtime
double amount,
 tval *next_ptr

tval
int evtime
double amount,
 tval *next_ptr

tval
int evtime
double amount,
 tval *next_ptr

tvar1
tval *st_val
tvar1 *next_ptr

Figure 3. Parameter Sheet Hierarchy

dyrunset: parameters necessary to run the model, input/output directories, time period
to be run etc.

objtype: This file tells the model how many object types there are (region, household,
person etc.).

objtype_x: contains the incidences of each of the object types (r, h, p, etc.). So
objtype_p would contain the set of id’s of all persons.

dyvardesc: In this file, all variables used in the model framework are declared and
described.

linkage: these parameters define the set of possible links between objects.

link_xy: Stores the linkages between objects.

agespine: contains the list of modules to be run in the dynamic model.

transition: Each module has a corresponding parameter sheet in the parameter file
“Transitions”. These parameter files tell the model the output variables of each
process, what type of process, whether a process needs to be aligned and the actual
process parameters themselves such as the transition rates, regression equation and
policy rules etc.

alignment: If a particular process is to be aligned, then the model framework will
look for an appropriate set of alignment parameters.

polparam: this parameter set contains information associated with each parameter for
each possible “system”, where the system to be run is defined in the dyrunset
parameters.

See Parameterisation section for more detailed description.

objtype

transition

alignment

dyvardesc
polparam

dyrunset

agespine

DATA

linkage

link_xy

objtype_x

Model

 Parameters dealing with the data structure Parameters dealing with simulation process

Our papers can be downloaded at:

http://cerp.unito.it/publications

CeRP Working Paper Series

N° 1/00 Guido Menzio Opting Out of Social Security over the Life Cycle

N° 2/00 Pier Marco Ferraresi
Elsa Fornero

Social Security Transition in Italy: Costs, Distorsions and (some)
Possible Correction

N° 3/00 Emanuele Baldacci
Luca Inglese

Le caratteristiche socio economiche dei pensionati in Italia.
Analisi della distribuzione dei redditi da pensione (only available
in the Italian version)

N° 4/01 Peter Diamond Towards an Optimal Social Security Design

N° 5/01 Vincenzo Andrietti Occupational Pensions and Interfirm Job Mobility in the
European Union. Evidence from the ECHP Survey

N° 6/01 Flavia Coda Moscarola The Effects of Immigration Inflows on the Sustainability of the
Italian Welfare State

N° 7/01 Margherita Borella The Error Structure of Earnings: an Analysis on Italian
Longitudinal Data

N° 8/01 Margherita Borella Social Security Systems and the Distribution of Income: an
Application to the Italian Case

N° 9/01 Hans Blommestein Ageing, Pension Reform, and Financial Market Implications in
the OECD Area

N° 10/01 Vincenzo Andrietti and Vincent
Hildebrand

Pension Portability and Labour Mobility in the United States.
New Evidence from the SIPP Data

N° 11/01 Mara Faccio and Ameziane
Lasfer

Institutional Shareholders and Corporate Governance: The Case
of UK Pension Funds

N° 12/01 Roberta Romano Less is More: Making Shareholder Activism a Valuable
Mechanism of Corporate Governance

N° 13/01 Michela Scatigna Institutional Investors, Corporate Governance and Pension Funds

N° 14/01 Thomas H. Noe Investor Activism and Financial Market Structure

N° 15/01 Estelle James How Can China Solve ist Old Age Security Problem? The
Interaction Between Pension, SOE and Financial Market Reform

N° 16/01 Estelle James and
Xue Song

Annuities Markets Around the World: Money’s Worth and Risk
Intermediation

N° 17/02 Richard Disney and
Sarah Smith

The Labour Supply Effect of the Abolition of the Earnings Rule
for Older Workers in the United Kingdom

N° 18/02 Francesco Daveri Labor Taxes and Unemployment: a Survey of the Aggregate
Evidence

N° 19/02 Paolo Battocchio
Francesco Menoncin

Optimal Portfolio Strategies with Stochastic Wage Income and
Inflation: The Case of a Defined Contribution Pension Plan

N° 20/02 Mauro Mastrogiacomo Dual Retirement in Italy and Expectations

N° 21/02 Olivia S. Mitchell
David McCarthy

Annuities for an Ageing World

N° 22/02 Chris Soares
Mark Warshawsky

Annuity Risk: Volatility and Inflation Exposure in Payments
from Immediate Life Annuities

N° 23/02 Ermanno Pitacco Longevity Risk in Living Benefits

N° 24/02 Laura Ballotta
Steven Haberman

Valuation of Guaranteed Annuity Conversion Options

N° 25/02 Edmund Cannon
Ian Tonks

The Behaviour of UK Annuity Prices from 1972 to the Present

N° 26/02 E. Philip Davis Issues in the Regulation of Annuities Markets

N° 27/02 Reinhold Schnabel Annuities in Germany before and after the Pension Reform of
2001

N° 28/02 Luca Spataro New Tools in Micromodeling Retirement Decisions: Overview
and Applications to the Italian Case

N° 29/02 Marco Taboga The Realized Equity Premium has been Higher than Expected:
Further Evidence

N° 30/03 Bas Arts
Elena Vigna

A Switch Criterion for Defined Contribution Pension Schemes

N° 31/03 Giacomo Ponzetto Risk Aversion and the Utility of Annuities

N° 32/04 Angelo Marano
Paolo Sestito

Older Workers and Pensioners: the Challenge of Ageing on the
Italian Public Pension System and Labour Market

N° 33/04 Elsa Fornero
Carolina Fugazza
Giacomo Ponzetto

A Comparative Analysis of the Costs of Italian Individual
Pension Plans

N° 34/04 Chourouk Houssi Le Vieillissement Démographique :
Problématique des Régimes de Pension en Tunisie

N° 35/04 Monika Bütler
Olivia Huguenin
Federica Teppa

What Triggers Early Retirement. Results from Swiss Pension
Funds

N° 36/04 Laurence J. Kotlikoff Pensions Systems and the Intergenerational Distribution of
Resources

N° 37/04 Jay Ginn Actuarial Fairness or Social Justice?
A Gender Perspective on Redistribution in Pension Systems

N° 38/05 Carolina Fugazza
Federica Teppa

An Empirical Assessment of the Italian Severance Payment
(TFR)

N° 39/05 Anna Rita Bacinello Modelling the Surrender Conditions in Equity-Linked Life
Insurance

N° 40/05 Carolina Fugazza
Massimo Guidolin
Giovanna Nicodano

Investing for the Long-Run in European Real Estate. Does
Predictability Matter?

N° 41/05 Massimo Guidolin
Giovanna Nicodano

Small Caps in International Equity Portfolios: The Effects of
Variance Risk.

N° 42/05 Margherita Borella
Flavia Coda Moscarola

Distributive Properties of Pensions Systems: a Simulation of the
Italian Transition from Defined Benefit to Defined Contribution

N° 43/05 John Beshears
James J. Choi
David Laibson
Brigitte C. Madrian

The Importance of Default Options for Retirement Saving
Outcomes: Evidence from the United States

N° 44/05 Henrik Cronqvist Advertising and Portfolio Choice

N° 45/05 Claudio Campanale Increasing Returns to Savings and Wealth Inequality

N° 46/05 Annamaria Lusardi
Olivia S. Mitchell

Financial Literacy and Planning: Implications for Retirement
Wellbeing

N° 47/06 Michele Belloni
Carlo Maccheroni

Actuarial Neutrality when Longevity Increases: An Application
to the Italian Pension System

N° 48/06 Onorato Castellino
Elsa Fornero

Public Policy and the Transition to Private Pension Provision in
the United States and Europe

N° 49/06 Mariacristina Rossi Examining the Interaction between Saving and Contributions to
Personal Pension Plans. Evidence from the BHPS

N° 50/06 Andrea Buffa
Chiara Monticone

Do European Pension Reforms Improve the Adequacy of
Saving?

N° 51/06 Giovanni Mastrobuoni The Social Security Earnings Test Removal. Money Saved or
Money Spent by the Trust Fund?

N° 52/06 Luigi Guiso
Tullio Jappelli

Information Acquisition and Portfolio Performance

N° 53/06 Giovanni Mastrobuoni Labor Supply Effects of the Recent Social Security Benefit Cuts:
Empirical Estimates Using Cohort Discontinuities

N° 54/06 Annamaria Lusardi
Olivia S. Mitchell

Baby Boomer Retirement Security: The Roles of Planning,
Financial Literacy, and Housing Wealth

N° 55/06 Antonio Abatemarco On the Measurement of Intra-Generational Lifetime
Redistribution in Pension Systems

N° 56/07 John A. Turner
Satyendra Verma

Why Some Workers Don’t Take 401(k) Plan Offers:
Inertia versus Economics

N° 57/07 Giovanni Mastrobuoni
Matthew Weinberg

Heterogeneity in Intra-Monthly Consumption. Patterns, Self-
Control, and Savings at Retirement

N° 58/07 Elisa Luciano
Jaap Spreeuw
Elena Vigna

Modelling Stochastic Mortality for Dependent Lives

N° 59/07 Riccardo Calcagno
Roman Kraeussl
Chiara Monticone

An Analysis of the Effects of the Severance Pay Reform on
Credit to Italian SMEs

N° 60/07 Riccardo Cesari
Giuseppe Grande
Fabio Panetta

La Previdenza Complementare in Italia:
Caratteristiche, Sviluppo e Opportunità per i Lavoratori

N° 61/07 Irina Kovrova Effects of the Introduction of a Funded Pillar on the Russian
Household Savings: Evidence from the 2002 Pension Reform

N° 62/07 Margherita Borella
Elsa Fornero
Mariacristina Rossi

Does Consumption Respond to Predicted Increases in Cash-on-
hand Availability? Evidence from the Italian “Severance Pay”

N° 63/07 Claudio Campanale Life-Cycle Portfolio Choice: The Role of Heterogeneous Under-
Diversification

N° 64/07 Carlo Casarosa
Luca Spataro

Rate of Growth of Population, Saving and Wealth in the Basic
Life-cycle Model when the Household is the Decision Unit

N° 65/07 Annamaria Lusardi Household Saving Behavior: The Role of Literacy, Information
and Financial Education Programs
(Updated version June 08: “Financial Literacy: An Essential Tool
for Informed Consumer Choice?”)

N° 66/07 Maarten van Rooij
Annamaria Lusardi
Rob Alessie

Financial Literacy and Stock Market Participation

N° 67/07 Carolina Fugazza
Maela Giofré
Giovanna Nicodano

International Diversification and Labor Income Risk

N° 68/07 Massimo Guidolin
Giovanna Nicodano

Small Caps in International Diversified Portfolios

N° 69/07 Carolina Fugazza
Massimo Guidolin
Giovanna Nicodano

Investing in Mixed Asset Portfolios: the Ex-Post Performance

N° 70/07 Radha Iyengar
Giovanni Mastrobuoni

The Political Economy of the Disability Insurance. Theory and
Evidence of Gubernatorial Learning from Social Security
Administration Monitoring

N° 71/07 Flavia Coda Moscarola Women participation and caring decisions: do different
institutional frameworks matter? A comparison between Italy
and The Netherlands

N° 72/08 Annamaria Lusardi
Olivia Mitchell

Planning and Financial Literacy: How Do Women Fare?

N° 73/08 Michele Belloni
Rob Alessie

The Importance of Financial Incentives on Retirement Choices:
New Evidence for Italy

N° 74/08 Maela Giofré Information Asymmetries and Foreign Equity Portfolios:
Households versus Financial Investors

N° 75/08 Harold Alderman
Johannes Hoogeveen
Mariacristina Rossi

Preschool Nutrition and Subsequent Schooling Attainment:
Longitudinal Evidence from Tanzania

N° 76/08 Riccardo Calcagno
Elsa Fornero
Mariacristina Rossi

The Effect of House Prices on Household Saving: The Case of
Italy

N° 77/08 Giovanni Guazzarotti
Pietro Tommasino

The Annuity Market in an Evolving Pension System: Lessons
from Italy

N° 78/08 Margherita Borella
Giovanna Segre

Le pensioni dei lavoratori parasubordinati: prospettive dopo un
decennio di gestione separata

N° 79/08 Annamaria Lusardi Increasing the Effectiveness of Financial Education in the
Workplace

N° 80/08 Claudio Campanale Learning, Ambiguity and Life-Cycle Portfolio Allocation

N° 81/09 Fabio Bagliano
Claudio Morana

Permanent and Transitory Dynamics in House Prices and
Consumption: Cross-Country Evidence

N° 82/09 Carolina Fugazza
Massimo Guidolin
Giovanna Nicodano

Time and Risk Diversification in Real Estate Investments:
Assessing the Ex Post Economic Value

N° 83/09 Annamaria Lusardi
Peter Tufano

Debt Literacy, Financial Experiences, and Overindebtedness

N° 84/09 Luca Spataro Il sistema previdenziale italiano dallo shock petrolifero del 1973
al Trattato di Maastricht del 1993

N° 85/09 Cathal O’Donoghue
John Lennon
Stephen Hynes

The Life-Cycle Income Analysis Model (LIAM): A Study of a
Flexible Dynamic Microsimulation Modelling Computing
Framework

